Онлайн-Книжки » Книги » 💉 Медицина » Живи долго! Научный подход к долгой молодости и здоровью - Майкл Грегер

Читать книгу "Живи долго! Научный подход к долгой молодости и здоровью - Майкл Грегер"

6
0

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 495 496 497 ... 510
Перейти на страницу:
Nutr Diabetes. 2018;8(1):58. https://pubmed.ncbi.nlm.nih.gov/30405108/

7956

Dorling JL, Martin CK, Redman LM. Calorie restriction for enhanced longevity: the role of novel dietary strategies in the present obesogenic environment. Ageing Res Rev. 2020;64:101038. https://pubmed.ncbi.nlm.nih.gov/32109603/

7957

Appleton BS, Campbell TC. Inhibition of aflatoxin-initiated preneoplastic liver lesions by low dietary protein. Nutr Cancer. 1982;3(4):200–6. https://pubmed.ncbi.nlm.nih.gov/6128727/

7958

Solon-Biet SM, McMahon AC, Ballard JWO, et al. The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice. Cell Metab. 2014;19(3):418–30. https://pubmed.ncbi.nlm.nih.gov/24606899/

7959

Solon-Biet SM, Mitchell SJ, de Cabo R, Raubenheimer D, Le Couteur DG, Simpson SJ. Macronutrients and caloric intake in health and longevity. J Endocrinol. 2015;226(1):R17–28. https://pubmed.ncbi.nlm.nih.gov/26021555/

7960

Fontana L, Adelaiye RM, Rastelli AL, et al. Dietary protein restriction inhibits tumor growth in human xenograft models. Oncotarget. 2013;4(12):2451–61. https://pubmed.ncbi.nlm.nih.gov/24353195/

7961

Fontana L, Adelaiye RM, Rastelli AL, et al. Dietary protein restriction inhibits tumor growth in human xenograft models. Oncotarget. 2013;4(12):2451–61. https://pubmed.ncbi.nlm.nih.gov/24353195/

7962

Rubio-Patiño C, Bossowski JP, De Donatis GM, et al. Low-protein diet induces IRE1a-dependent anticancer immunosurveillance. Cell Metab. 2018;27(4):828–42.e7. https://pubmed.ncbi.nlm.nih.gov/29551590/

7963

Orillion A, Damayanti NP, Shen L, et al. Dietary protein restriction reprograms tumor-associated macrophages and enhances immunotherapy. Clin Cancer Res. 2018;24(24):6383–95. https://pubmed.ncbi.nlm.nih.gov/30190370/

7964

Pili R, Fontana L. Low-protein diet in cancer: ready for prime time? Nat Rev Endocrinol. 2018;14(7):384–6. https://pubmed.ncbi.nlm.nih.gov/29765134/

7965

Gao X, Sanderson SM, Dai Z, et al. Dietary methionine influences therapy in mouse cancer models and alters human metabolism. Nature. 2019;572(7769):397–401. https://pubmed.ncbi.nlm.nih.gov/31367041/

7966

Solon-Biet SM, McMahon AC, Ballard JWO, et al. The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice. Cell Metab. 2014;19(3):418–30. https://pubmed.ncbi.nlm.nih.gov/24606899/

7967

Trepanowski JF, Canale RE, Marshall KE, Kabir MM, Bloomer RJ. Impact of caloric and dietary restriction regimens on markers of health and longevity in humans and animals: a summary of available findings. Nutr J. 2011;10:107. https://pubmed.ncbi.nlm.nih.gov/21981968/

7968

Pamplona R, Barja G. Mitochondrial oxidative stress, aging and caloric restriction: the protein and methionine connection. Biochim Biophys Acta. 2006;1757(5–6):496–508. https://pubmed.ncbi.nlm.nih.gov/16574059/

7969

McIsaac RS, Lewis KN, Gibney PA, Buffenstein R. From yeast to human: exploring the comparative biology of methionine restriction in extending eukaryotic life span. Ann N Y Acad Sci. 2016;1363:155–70. https://pubmed.ncbi.nlm.nih.gov/26995762/

7970

Gorbunova V, Bozzella MJ, Seluanov A. Rodents for comparative aging studies: from mice to beavers. Age (Dordr). 2008;30(2–3):111–9. https://pubmed.ncbi.nlm.nih.gov/19424861/

7971

Zimmerman JA, Malloy V, Krajcik R, Orentreich N. Nutritional control of aging. Exp Gerontol. 2003;38(1–2):47–52. https://pubmed.ncbi.nlm.nih.gov/12543260/

7972

Swindell WR. Dietary restriction in rats and mice: a meta-analysis and review of the evidence for genotype-dependent effects on lifespan. Ageing Res Rev. 2012;11(2):254–70. https://pubmed.ncbi.nlm.nih.gov/22210149/

7973

Miller RA, Buehner G, Chang Y, Harper JM, Sigler R, Smith-Wheelock M. Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance. Aging Cell. 2005;4(3):119–25. https://pubmed.ncbi.nlm.nih.gov/15924568/

7974

Yu D, Yang SE, Miller BR, et al. Short-term methionine deprivation improves metabolic health via sexually dimorphic, mTORC1-independent mechanisms. FASEB J. 2018;32(6):3471–82. https://pubmed.ncbi.nlm.nih.gov/29401631/

7975

Miller RA, Buehner G, Chang Y, Harper JM, Sigler R, Smith-Wheelock M. Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance. Aging Cell. 2005;4(3):119–25. https://pubmed.ncbi.nlm.nih.gov/15924568/

7976

Miller RA, Buehner G, Chang Y, Harper JM, Sigler R, Smith-Wheelock M. Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance. Aging Cell. 2005;4(3):119–25. https://pubmed.ncbi.nlm.nih.gov/15924568/

7977

Yu D, Yang SE, Miller BR, et al. Short-term methionine deprivation improves metabolic health via sexually dimorphic, mTORC1-independent mechanisms. FASEB J. 2018;32(6):3471–82. https://pubmed.ncbi.nlm.nih.gov/29401631/

7978

Ruckenstuhl C, Netzberger C, Entfellner I, et al. Lifespan extension by methionine restriction requires autophagy-dependent vacuolar acidification. PLoS Genet. 2014;10(5):e1004347. https://pubmed.ncbi.nlm.nih.gov/24785424/

7979

Sharma S, Dixon T, Jung S, et al. Dietary methionine restriction reduces inflammation independent of FGF21 action. Obesity (Silver Spring). 2019;27(8):1305–13. https://pubmed.ncbi.nlm.nih.gov/31207147/

7980

Miller RA, Buehner G, Chang Y, Harper JM, Sigler R, Smith-Wheelock M. Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance. Aging Cell. 2005;4(3):119–25. https://pubmed.ncbi.nlm.nih.gov/15924568/

7981

Brown-Borg HM, Rakoczy SG, Wonderlich JA, et al. Growth hormone signaling is necessary for lifespan extension by dietary methionine. Aging Cell. 2014;13(6):1019–27. https://pubmed.ncbi.nlm.nih.gov/25234161/

7982

Harper AE, Benevenga NJ, Wohlhueter RM. Effects of ingestion of disproportionate amounts of amino acids. Physiol Rev. 1970;50(3):428–558. https://pubmed.ncbi.nlm.nih.gov/4912906/

7983

López-Torres M, Barja G. Lowered methionine ingestion as responsible for the decrease in rodent mitochondrial oxidative stress in protein and dietary restriction. Possible implications for humans. Biochim Biophys Acta. 2008;1780(11):1337–47. https://pubmed.ncbi.nlm.nih.gov/18252204/

7984

Mori N, Hirayama K. Long-term consumption of a methionine-supplemented diet increases iron and lipid peroxide levels in rat liver. J Nutr. 2000;130(9):2349–55. https://pubmed.ncbi.nlm.nih.gov/10958834/

7985

Hidiroglou N, Gilani GS, Long L, et al. The influence of dietary vitamin E, fat, and methionine on blood cholesterol profile, homocysteine levels, and oxidizability of low density lipoprotein in the gerbil. J Nutr Biochem. 2004;15(12):730–40. https://pubmed.ncbi.nlm.nih.gov/15607646/

1 ... 495 496 497 ... 510
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Живи долго! Научный подход к долгой молодости и здоровью - Майкл Грегер», после закрытия браузера.

Комментарии и отзывы (0) к книге "Живи долго! Научный подход к долгой молодости и здоровью - Майкл Грегер"