Онлайн-Книжки » Книги » 👨‍👩‍👧‍👦 Домашняя » Величайшие математические задачи - Йен Стюарт

Читать книгу "Величайшие математические задачи - Йен Стюарт"

277
0

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 96 97 98 ... 100
Перейти на страницу:

Вектор. В механике величина, которая характеризуется как размером, так и направлением.

Верхняя граница. Конкретное число, гарантированно большее, чем некая искомая величина.

Вихрь. Жидкость, кружащаяся в водовороте. Может быть любого размера, в том числе очень маленького.

Волна. Возмущение, которое движется сквозь среду — твердое тело, жидкость или газ, не оставляя после себя в среде никаких постоянных изменений.

Вращение (поворот). На плоскости: преобразование, при котором все точки сдвигаются на один и тот же угол вокруг фиксированного центра. В пространстве: преобразование, при котором все точки сдвигаются на один и тот же угол вокруг фиксированной прямой — оси вращения.

Время разрушения решения. Время, после которого решение дифференциального уравнения прекращает существовать.

Гомология (группа). Топологический инвариант пространства, определенный замкнутыми петлями. Две петли гомологичны, если их разность представляет собой границу топологического диска.

Гомотопия (группа). Топологический инвариант пространства, определенный замкнутыми петлями. Две петли гомотопичны, если любая из них может быть непрерывно преобразована во вторую.

Гранецентрированная кубическая решетка. Повторяющаяся в пространстве совокупность точек. Кубики ставятся рядами и один на другой, образуя как бы трехмерную шахматную доску, а затем берутся их вершины и центры всех шести граней (см. рис. 17, 19).

Граница. Край определенной области.

Группа. Абстрактная алгебраическая структура, включающая в себя множество и правило комбинирования двух любых элементов множества, соответствующее трем условиям: в нем выполняется сочетательный закон, существует единичный элемент и каждому элементу соответствует обратный элемент.

Действительное число. Любое число, которое может быть выражено десятичной дробью, возможно, бесконечной. Пример: π = 3,1415926535897932385…

Дзета-функция. Комплексная функция, введенная Риманом и представляющая простые числа аналитически. Определяется рядом



который сходится, если действительная часть s больше единицы. Это определение может быть расширено на все комплексные s при помощи процесса, известного как аналитическое продолжение.

Динамическая система. Любая система, которая изменяется во времени по определенным правилам. К примеру, движение планет в Солнечной системе.

Диофантово уравнение. Уравнение, решения которого должны быть рациональными числами.

Диск (топологический). Область на поверхности, которую можно непрерывно преобразовывать в окружность вместе с тем, что у нее внутри.

Дифференциальное уравнение. Уравнение, в котором функция соотносится со скоростью ее изменения.

Дифференциальное уравнение в частных производных. Дифференциальное уравнение, в котором фигурируют скорости изменения некой функции по отношению к двум или более различным переменным (часто это пространство и время).

Додекаэдр. Многогранник, гранями которого являются 12 правильных пятиугольников (см. рис. 38).

Двойственная сеть. Сеть, полученная из данной сети. Чтобы получить ее, каждую область первоначальной сети следует заменить точкой и соединить эти точки ребрами, если соответствующие области граничат (см. рис. 10).

Единственность разложения на простые множители. Свойство, согласно которому любое число может быть записано как произведение простых множителей единственным способом с точностью до порядка записи множителей. Это верно для целых чисел, но не всегда верно в более общих алгебраических системах.

Идеальное число. Число, которое не входит в данную систему алгебраических чисел, но связано с этой системой так, что восстанавливает единственность разложения на простые множители в случаях, когда это свойство нарушается. В современной алгебре заменен идеалом — особым подмножеством той же системы.

Импульс. Произведение массы на скорость.

Индукция. Общий метод доказательства теорем о натуральных числах. Если какое-то свойство истинно для 0 и из его истинности для любого натурального n следует его истинность для n + 1, это свойство истинно для всех натуральных чисел.

Интеграл. Операция исчисления, при которой, по существу, складывается очень большое количество очень маленьких составляющих. Интеграл функции равен площади под ее графиком.

Иррациональное число. Действительное число, которое не является рациональным, т. е. не может быть записано в виде p/q, где p и q — целые числа и q ≠ 0. Примерами могут служить √2 и π.

Калибровочная симметрия. Группа местных симметрий системы уравнений: преобразования переменных в разных точках пространства может быть различными, но, если обеспечить уравнениям компенсирующее изменение с разумным физическим обоснованием, любое решение системы остается решением.

Калибровочная теория. Квантовая теория поля с группой калибровочных симметрий.

Квадрат. Результат умножения числа на самое себя. К примеру, квадрат 7 равен 7 × 7 = 49, обозначается 7².

Квадратное уравнение. Любое уравнение ax² + bx + c = 0, где x — неизвестное, а a, b, c — константы.

Квантовая теория поля. Квантовомеханическая теория величины, которая пронизывает пространство и может иметь (и обычно имеет) разные значения в разных его местах.

Квантово-волновая функция. Математическая функция, определяющая свойства квантовой системы.

Класс E. Алгоритм, время работы которого для входа размера n пропорционально n-й степени некоей постоянной величины.

Класс P. Алгоритм, время работы которого пропорционально некоей постоянной степени размера входа.

Класс не-P. Не класс P.

Класс NP. Задача, для которой предлагаемое решение может быть проверено (но необязательно найдено) при помощи алгоритма класса P.

Класс Ходжа. Когомологический класс циклов на алгебраическом многообразии с особыми аналитическими свойствами.

Когомологическая группа. Абстрактная алгебраическая структура, связанная с топологическим пространством, аналогичная гомологической группе, но «двойственная» ей.

Комплексный анализ. Анализ — логически строгие вычисления, осуществляемые при помощи комплексных функций комплексного переменного.

1 ... 96 97 98 ... 100
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Величайшие математические задачи - Йен Стюарт», после закрытия браузера.

Комментарии и отзывы (0) к книге "Величайшие математические задачи - Йен Стюарт"