Читать книгу "Укрощение бесконечности. История математики от первых чисел до теории хаоса - Йен Стюарт"
Шрифт:
Интервал:
Закладка:
Рассел свел на нет значение книги Фреге своим логическим парадоксом о сельском брадобрее, который бреет всякого, кто не бреется сам: множество всех множеств, не являющееся элементом самого себя. Гёдель свел на нет значение программы Гильберта другим логическим парадоксом – человека, который сказал: это утверждение ложно. По сути, это неразрешимое утверждение Гёделя – на котором строится всё остальное – теорема T, которая утверждает: «Эта теорема не может быть доказана».
Если всякая теорема не может быть ни доказана, ни опровергнута, то утверждение Гёделя T противоречиво в обоих случаях. Предположим, Т можно доказать. Тогда Т утверждает, что Т не может быть доказано, – противоречие! А если Т можно опровергнуть, то утверждение Т ложно, и будет ошибкой утверждать, что Т не может быть доказано. Получается, Т можно доказать, – снова противоречие. Следовательно, предположение о том, что всякую теорему можно доказать или опровергнуть, говорит нам, что Т может быть доказано тогда и только тогда, когда оно не может быть доказано.
Теоремы Гёделя изменили наш взгляд на логические основания математики. Они заставили предположить, что кажущиеся нам сейчас неразрешимыми проблемы могут вообще не иметь решения: ни подтверждающего их, ни опровергающего, а вечно пребывать в чистилище неразрешимости. И такими предстают перед нами очень многие интересные проблемы. Однако эффект от работ Гёделя на практике так и не вышел далеко за пределы фундаментальной математики, в лоне которой и появился на свет. Математики продолжают искать доказательства для гипотез Пуанкаре и Римана, не жалея времени на открытие новых доводов за и против. Они отдают себе отчет в том, что проблема может оказаться неразрешимой, и даже могут заняться поисками доказательств этой неразрешимости, если найдут исходную точку. Однако большинство из известных нам неразрешимых проблем манят ученых именно неразрешимостью, и вряд ли кому-то удастся ее доказать.
ЧТО ЛОГИКА ДАЕТ НАМ
Важнейший вариант гёделевых теорем о неполноте был открыт Аланом Тьюрингом. Их анализ очертил путь для создания первых компьютеров. В своей работе On Computable Numbers, with an application to the Entscheidungsproblem («О вычислимых числах, приложение к проблеме разрешения»), опубликованной в 1936 г., Тьюринг предложил формализацию алгоритмических вычислений – следующую заранее написанному алгоритму – в рамках так называемой машины Тьюринга. Это математическая идеализация устройства, которое пишет символы 0 и 1 на движущейся ленте, подчиняясь конкретным правилам. Он доказал, что проблема остановки машины Тьюринга – выполнится ли окончательное вычисление для данного ввода данных – неразрешима. А значит, нет такого алгоритма, который бы предсказал, остановится ли вычисление или нет.
Тьюринг доказал свой результат, предположив, что проблема остановки разрешима, и построив алгоритм, который останавливается тогда и только тогда, когда не останавливается. Вот и противоречие. Его результат показывает, что существуют ограничения для вычислимости. Некоторые философы расширили эти идеи для определения пределов рационального мышления, и было выдвинуто предположение, что сознание не может функционировать алгоритмически. Однако их аргументы пока не так уж и убедительны. Они показали, что наивно полагать, будто мозг работает как современный компьютер, хотя это не значит, что компьютер не может имитировать работу мозга.
По мере того как на основе предшествующих теорий математики постоянно строили всё новые конструкции, одна сложнее другой, сверхструктура математики начала раскалываться из-за нераспознанных предположений, которые на поверку оказались ложными. Для предотвращения коллапса требовалась серьезная работа по укреплению фундамента.
Последующие работы углубились в истинную природу чисел, двигаясь вспять от комплексных чисел к действительным, рациональным и, наконец, натуральным. Но и там процесс не закончился. Сами числовые системы подверглись пересмотру с точки зрения еще более простых составляющих – множеств.
Теория множеств принесла немало преимуществ, включая разумную, хотя и неортодоксальную систему бесконечных чисел. Она также открыла несколько фундаментальных парадоксов, связанных с понятием множества. Их решение не стало, как надеялся Гильберт, полным обоснованием аксиоматической математики и доказательством ее логической последовательности. Но оно доказало, что математика по природе своей имеет ограничения и некоторые задачи вообще не имеют решения. В результате нам пришлось кардинально изменить свое отношение к понятиям математической истины и определенности. И это прекрасно: лучше жить в осознании пределов наших возможностей, чем в обманчивом раю.
Рациональный подход к случайности
В XX и начале ХХI в. математика развивалась взрывными темпами. За последние 100 лет в ней было сделано больше открытий, чем за всю предыдущую историю человечества. Даже для краткого их перечисления потребуются тысячи страниц, так что придется выбирать лишь некоторые примеры из обилия доступных сведений.
Одна из самых юных областей математики – теория вероятностей, изучающая возможности появления случайных событий. Это математика неопределенности. Первые робкие шаги делались на протяжении долгих веков: это и попытки вычислить с помощью комбинаторики шансы выигрыша в азартных играх, и методы повышения точности астрономических наблюдений, несмотря на ошибки наблюдателей, но только к началу XX в. теория вероятностей приобрела статус самостоятельной науки.
В настоящее время теория вероятностей – обширнейшая область математики, и ее прикладная ветвь, статистика, оказывает важное влияние на повседневную жизнь – возможно, более значительное, чем любой из прочих основных разделов математики. Статистика стала одним из главных аналитических методов даже в медицине. Ни одно лекарственное средство не допускается на рынок и ни один метод лечения не разрешается в больнице, пока клинические испытания не докажут их полную безопасность и эффективность. Здесь безопасность относительна: лечение может быть предложено больным, страдающим от смертельно опасного недуга, когда шансы на успех слишком малы, но не в менее тяжелых случаях.
Также теория вероятностей чаще всех прочих областей математики страдает от неверного толкования и искажений. Но ее точное и разумное применение приносит человечеству неоценимую пользу.
Некоторые вопросы из теории вероятностей уходят корнями в Античность. Из Средних веков до нас дошли записи дискуссий о шансе выбросить различные числа на двух игральных костях. Чтобы лучше представить себе, как это работает, начнем с одной кости. Предположим, она не доработана[8] – что очень трудно доказать – и на ней шесть чисел: 1, 2, 3, 4, 5 и 6, которые выпадают одинаково часто в конечном счете при длительной игре. В короткой игре такое равноправие невозможно: первый бросок, например, даст в результате только одно из чисел. Даже после шести бросков вы, скорее всего, не получите по одному разу каждое из чисел. Но в длинных сериях бросков, или попыток, мы вправе ожидать появления каждого числа примерно в каждом шестом броске, т. е. вероятность равна 1/6. Если этого не происходит, то у кости, вероятно, смещен центр тяжести.
Внимание!
Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Укрощение бесконечности. История математики от первых чисел до теории хаоса - Йен Стюарт», после закрытия браузера.