Онлайн-Книжки » Книги » 👨‍👩‍👧‍👦 Домашняя » Укрощение бесконечности. История математики от первых чисел до теории хаоса - Йен Стюарт

Читать книгу "Укрощение бесконечности. История математики от первых чисел до теории хаоса - Йен Стюарт"

306
0

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 84 85 86 ... 98
Перейти на страницу:

Часто говорят, что Гильберт отстаивал утверждение, будто математика – отвлеченная игра в символы, но это преувеличение. Гильберт считал, что если вы хотите подвести под свою идею надежную логическую основу, следует рассуждать о ней так, как если бы она была отвлеченной игрой в символы. Всё остальное не имеет отношения к логической структуре. Но ни один человек, достаточно серьезно относящийся к математическим открытиям Гильберта и имеющий представление о его беззаветной преданности науке, не сказал бы, что этот ученый считал, будто дело его жизни – это отвлеченная игра.

ЧТО ЛОГИКА ДАЛА ИМ

Чарльз Лютвидж Доджсон, более известный как Льюис Кэрролл, использовал свои формулировки для раздела математической логики, известного нам как логика высказываний, чтобы составлять и решать логические загадки. Типичный пример такой формулировки он приводит в своем труде «Символическая логика» от 1896 г.

• Никто из тех, кто действительно ценит Бетховена, не станет шуметь во время исполнения «Лунной сонаты».

• Морские свинки безнадежно невежественны в музыке.

• Те, кто безнадежно невежествен в музыке, не станут соблюдать тишину во время исполнения «Лунной сонаты».

Вывод таков: ни одна морская свинка не ценит Бетховена. Такая форма логического построения называется силлогизмом и уходит корнями в классические труды древних греков.

Преуспев в геометрии, Гильберт обратил взор на гораздо более амбициозный проект: подвести под всю математику непоколебимый логический фундамент. Для этого он внимательно изучал труды современных ему логиков и составил подробную программу для того, чтобы раз и навсегда привести в порядок основания математики. В дополнение к доказательству того, что математика свободна от противоречий, он полагал, что нерешаемых проблем не существует в принципе и любое математическое утверждение может быть или доказано, или опровергнуто. Успех на первых порах убедил Гильберта в том, что он на верном пути и приблизился к своей основной цели.

Гёдель

Но нашелся всё же логик, которого так и не убедили доводы Гильберта в пользу того, что математика логически последовательна. Его звали Курт Гёдель, и его беспокойство по поводу программы Гильберта навсегда изменило наше отношение к математической истине.

До Гёделя математика просто считалась верной – и это был высший пример истины, потому что истина утверждения 2 + 2 = 4 была чем-то из сферы чистой мысли, независимой от физического мира. Математические истины не могут быть опровергнуты дальнейшими экспериментами. В этом смысле они превосходят физические истины вроде ньютоновского закона о силе гравитационного притяжения, обратно пропорциональной квадрату расстояния, опровергнутого наблюдениями за движением в перигелии Меркурия, которые подтверждают новую теорию гравитации, предложенную Эйнштейном.

Благодаря Гёделю математическая истина стала восприниматься как иллюзия. Существуют лишь математические доказательства. Их внутренняя логика может быть безупречной, но при этом они существуют в более широком контексте фундаментальной математики, где нет гарантий, что игра в целом вообще имеет смысл. Гёдель не просто предположил это, – он это доказал. По сути, два его достижения в совокупности разрушили до основания аккуратную, оптимистичную программу Гильберта.

Гёдель доказал, что если математика логически последовательна, то доказать это невозможно. И не потому, что он сам не смог найти доказательство, а потому, что доказательства не существует. И если вдруг, паче чаяния, вам удастся доказать, что математика последовательна, следом тут же придет доказательство тому, что это не так. Он также доказал, что ряд математических утверждений не могут быть ни доказаны, ни опровергнуты. И вновь не потому, что он лично не смог этого добиться, но потому, что это невозможно. Утверждения такого рода называются неразрешимыми.

Он доказал эти утверждения изначально в рамках признанных логических математических формулировок, принятых Расселом и Уайтхедом в их «Принципах математики». Поначалу Гильберт надеялся, что есть выход: надо просто найти более прочный фундамент. Но когда логики ознакомились с работой Гёделя, то очень быстро поняли, что те же идеи сработают для любой логической формулировки в математике, достаточно строгой, чтобы ясно выразить основные понятия арифметики.

КУРТ ГЁДЕЛЬ 1906–1978

В 1923 г., когда Гёдель поступил в университет в Вене, он еще не мог выбрать, изучать ли ему математику или физику. На его решение повлияли лекции парализованного Филиппа Фуртвенглера (брата известного дирижера и композитора Вильгельма). Сам Гёдель с детства был слаб здоровьем, и воля Фуртвенглера, сумевшего преодолеть физическую немощь, произвела на него большое впечатление. На семинарах под руководством Морица Шлика Гёдель начал изучать «Введение в математическую философию» Рассела, и тогда ему стало окончательно ясно, что его будущее связано с математической логикой.

Его докторская диссертация от 1930 г. доказывала, что одна ограниченная логическая система – исчисление высказываний первого порядка – является полной. Всякая истинная теорема может быть доказана и всякая ложная – опровергнута. Больше всего он известен благодаря доказательству гёделевых теорем о неполноте. В 1931 г. Гёдель опубликовал свою судьбоносную статью «О принципиально неразрешимых положениях в системе Principia Mathematica и родственных ей системах». В ней он доказывал, что ни одна система аксиом не будет логически полной для безупречной формализации математики. В 1931 г. он вступил в дискуссию о своей работе с логиком Эрнстом Цермело, но встреча ученых прошла неудачно, возможно потому, что Цермело успел прийти к таким же открытиям, только не смог их опубликовать.

В 1936 г. Шлик погиб от руки студента-нациста, и у Гёделя случился нервный срыв (уже второй). Оправившись от болезни, Гёдель выступил с несколькими лекциями в Принстоне. В 1938 г. он вопреки желанию матери женился на Адели Поркерт и вернулся в Принстон после включения Австрии в состав Германии. После начала Второй мировой войны Гёдель из опасений быть призванным на службу в немецкую армию эмигрировал в США, пробираясь через Россию и Японию. В 1940 г. он получил второй плодотворный результат, доказав, что отрицание континуум-гипотезы Кантора недоказуемо в стандартной аксиоматике теории множеств.

Он получил гражданство США в 1948 г. и провел остаток жизни в Принстоне. С годами он всё больше опасался за свое здоровье, пока не убедил себя в том, что кто-то пытается его отравить. Он отказался от пищи и скончался в больнице. До самого конца он любил вести философские диспуты со своими посетителями.

Любопытным следствием открытий Гёделя стал вывод, что всякая аксиоматическая система в математике должна быть неполна и вы никогда не сможете написать конечный список аксиом, который однозначно определит все истинные и ложные теоремы. Исключения не было: программа Гильберта не работала. Поговаривают, что сам Гильберт пришел в ярость, впервые услышав о работе Гёделя. Однако гневаться скорее стоило на себя, ведь основная идея в работе Гёделя была безупречна. (Техническое воплощение этой идеи оказалось очень сложным, но Гильберт всегда отлично справлялся с такими трудностями.) Скорее всего, Гильберт понял, что он должен был предвидеть появление теорем Гёделя.

1 ... 84 85 86 ... 98
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Укрощение бесконечности. История математики от первых чисел до теории хаоса - Йен Стюарт», после закрытия браузера.

Комментарии и отзывы (0) к книге "Укрощение бесконечности. История математики от первых чисел до теории хаоса - Йен Стюарт"