Онлайн-Книжки » Книги » 👨‍👩‍👧‍👦 Домашняя » Магия математики. Как найти x и зачем это нужно - Артур Бенджамин

Читать книгу "Магия математики. Как найти x и зачем это нужно - Артур Бенджамин"

431
0

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 59 60 61 ... 89
Перейти на страницу:

a = m² – n²

b = 2mn

c = m2 + n2

Обратите внимание: a² + b² = (m² – n²)² + (2mn)² = m4 + 2m²n² + n4, что равно (m² + n²)² = c², поэтому тройка (a, b, c) является пифагоровой. Например, если m = 2, а n = 1, получим (3, 4, 5); (m, n) = (3, 2) даст (5, 12, 13); (m, n) = (4, 1) – (15, 8, 17); (m, n) = (10, 7) – (51, 140, 149) и т. д. Самое интересное, что с помощью этого метода можно создать абсолютно любую пифагорову тройку (доказательство можно найти в любой книге по теории чисел).

Вся тригонометрия основана на двух очень важных функциях – синусе и косинусе. Возьмем треугольник ABC (вроде того, что изображен чуть ниже) и обозначим длину гипотенузы буквой c, а длины катетов, лежащих напротив ∠A и ∠B, – буквами a и b соответственно.



Синус угла ∠A (который в прямоугольном треугольнике должен быть острым) будем искать по формуле



Косинус этого угла – по формуле



Имейте в виду, что любой прямоугольный треугольник с углом A будет пропорционален нашему изначальному треугольнику, поэтому значения синуса и косинуса A от размеров треугольника не зависят.

Еще одна не менее популярная в тригонометрии функция – тангенс. Для угла A он представляет собой



в прямоугольном треугольнике –



Для всех этих формул есть свои специальные «запоминалки». Один мой знакомый, например, любил повторять: «Сильно противный Глеб, который прилег на гриб, так противно прилег». Здесь «СИльно» означает синус, все «ПРОТИВное» – противолежащий катет, «КОторый» – косинус, «ПРИЛег» – прилежащий катет, «ТАк» – тангенс, а слова, начинающиеся с буквы «г» – гипотенузу (то есть получаем подсказку насчет синуса, потом косинуса, а потом и тангенса).

Итак, в треугольнике с длинами сторон 3, 4 и 5 имеем



А что с углом B? Аккуратно подсчитаем и получим



то есть синус B будет равен косинусу A, а косинус B – синусу A! Волшебного в этом абсолютно ничего нет: просто сторона, противолежащая ∠A, является прилежащей к ∠B, и наоборот – сторона, прилежащая к ∠A, является противолежащей ∠B. Гипотенуза же у этих двух углов так и вовсе одна на двоих.

Так как ∠A + ∠B = 90°, мы можем сделать вывод, что для любого острого угла справедливо следующее:

sin (90° – A) = cos A cos (90° – A) = sin A

То есть если в треугольнике ABCA равен 40°, то при ∠B = 50° sin 50° = cos 40°, а cos 50° = sin 40°. Другими словами, косинус данного угла (40°) равен синусу дополнительного (50°).

Кроме синуса, косинуса и тангенса в тригонометрии есть еще три элементарные функции. Используются они, правда, не так часто, как уже известные нам, но почему бы не упомянуть и их? Это секанс, косеканс и котангенс, и смысл их заключается в том, что



Приставка «ко-» означает здесь те же отношения дополнения, что и в паре «синус – косинус», а именно: для любого острого угла прямоугольного треугольника sec (90° – A) = csc A, а tan (90° – A) = cot A.

Чтобы найти косинусы, тангенсы и все остальное, достаточно знать значение синуса одного из углов, это очевидно. Но ведь и его (скажем, sin 40°) тоже надо как-то найти, правда? Самый простой способ – воспользоваться калькулятором: просто включаем его и узнаем, что sin 40° = 0,642…. Откуда это значение берется, мы узнаем чуть позже.

Некоторые значения тригонометрических функций встречаются в расчетах настолько часто, что лучше всего их просто запомнить. Вернемся к треугольнику с углами 30°, 60° и 90° и вспомним про соотношение его сторон – 1: √3: 2. Получается, что



Стороны же треугольника с углами 45°, 45° и 90° имеют соотношение 1: 1: √2, следовательно

sin 45° = cos 45° = 1/√2 = √2/2

А так как tan запомнить придется только то, что tan 45° = 1 и что tan 90° определить невозможно, потому что cos 90° = 0.

С такими знаниями пора вернуться к подножию нашей горы. Только сначала давайте остановимся у первого попавшегося дерева и попробуем рассчитать его высоту.

Предположим, что мы не дошли до ствола 3 метра и что угол между землей под нашими ногами и верхушкой дерева составляет 50°, как изображено на рисунке. (Определить угол, кстати, можно либо с помощью приложения, которое в наши дни есть на многих смартфонах, либо посредством простого устройства, называющегося клинометр, которое легко собирается из транспортира, соломинки для питья и канцелярской скрепки.)

1 ... 59 60 61 ... 89
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Магия математики. Как найти x и зачем это нужно - Артур Бенджамин», после закрытия браузера.

Комментарии и отзывы (0) к книге "Магия математики. Как найти x и зачем это нужно - Артур Бенджамин"