Читать книгу "Неизвестное наше тело. О полезных паразитах, оригами из ДНК и суете вокруг гомеопатии - Рафаил Нудельман"
Шрифт:
Интервал:
Закладка:
Другое широкое применение магнитные наночастицы нашли в борьбе с раком. Обычные методы химиотерапии страдают тем недостатком, что лекарства не могут быть доставлены только в нужные места. Их просто вводят в организм, и поэтому они неизбежно попадают и туда, куда не следует, зачастую вызывая опасное побочное действие. Ненаправленное введение лекарств требует увеличения их дозы (чтобы достичь нужной их концентрации в опухоли), что усиливает эти вредные последствия. В 1970-е годы было предложено направлять лекарства в опухоли с помощью магнитных частиц, и сейчас, с развитием нанотехнологий, это стало возможным благодаря использованию описанного выше метода неоднородного магнитного поля. Этот метод открыл также возможность внедрять наночастицы внутрь опухолевых клеток, чтобы затем разрушать эти клетки путем нагревания частиц.
Что же в итоге? Как уже сказано выше, возможности магнитных наночастиц фантастичны, экспериментальные успехи в их применении несомненны. Сегодня медицина находится на пороге революционных изменений, на стадии перехода — точнее, поиска путей перехода — от успешных экспериментов в контролируемых лабораторных условиях к безопасным клиническим испытаниям. Но можно надеяться, что через считанные годы эти пути будут найдены.
Не говорите мне о Сколкове. Сколково — оно еще вона где, а реальная нанотехнология — она уже вот, в статье, опубликованной в американском журнале «Science». Называется эта статья «Наноробот для направленного переноса молекулярного груза», а речь в ней идет о программе создания наноустройства, которое сможет находить и уничтожать раковые клетки в популяции клеток здоровых. Не больше и не меньше. Поэтому давайте расскажем об этом открытии, тем более что рассказ этот обещает быть интересным.
Начнем с оригами. Да, я помню, что обещал поведать о нанороботе, но именно поэтому начать нужно с оригами. Оригами — это японское слово, и означает оно чисто японское, ставшее сейчас вездесущим, искусство складывать трехмерные формы из плоских листков бумаги (применять клей традиция не разрешает). Это большое искусство, а также сложная математическая задача. Так вот, в 2006 году сотрудник Калифорнийского технологического института Поль Ротемунд показал, что трехмерные сооружения можно строить, более того — что они могут строиться сами собой, из молекул ДНК. Метод Ротемунда получил название «ДНК-оригами». Сегодня он является одним из самых перспективных направлений в той части нанотехнологии, которая занимается созданием микроскопических структур из молекул ДНК.
Молекула ДНК оказалась особенно удобной для создания микроскопических структур в силу некоторых своих особенностей. Каждая такая молекула — это очень длинная цепь химических звеньев (нуклеотидов) четырех разных типов — А, Г, Ц и Т. В такой цепи могут быть миллионы звеньев. Большая длина позволяет строить из одной молекулы достаточно сложные структуры. Второй важной особенностью ДНК является химическое сродство ее нуклеотидов. Их химические свойства таковы, что нуклеотид Т энергично связывается с А, а Г — с Ц. Это создает возможность изгибать цепочку и удерживать ее в изогнутом состоянии. Для такой цели используется короткая цепочка из тех же нуклеотидов, называемая ДНК-олигомером. Такой олигомер, состоящий из нескольких десятков или сотен звеньев, можно создать искусственно, в пробирке, задав ему любое нужное расположение нуклеотидов. Его концы (например, нуклеотиды А и Г) можно химически присоединить к любым двум местам длинной цепи, где стоят «родственные» им нуклеотиды Т и Ц. Если эти места далеки друг от друга, а олигомер достаточно короток, то для такого присоединения потребуется изогнуть длинную цепь и сблизить те ее участки, где должны крепиться концы олигомера. Но потом, соединившись с этими участками, олигомер будет уже сам удерживать цепь в таком изогнутом состоянии. Иными словами, он будет работать как скрепка.
Ротемунд начал с плоских структур. Но затем, спустя три года после его открытия, группа, в которую входили американские, немецкие и датские ученые, сумела создать, опираясь на метод Ротемунда, крайне важные — уже в прикладном смысле — трехмерные ДНК-структуры. С помощью 250 олигомерных скрепок они «связали» из длинной ДНК шесть плоских квадратиков и соединили их в виде наноящика с открывающейся крышкой.
Этот успех, в свою очередь, вызвал новый поток работ, последней из которых (на момент написания этой книги в 2013 году) стало исследование гарвардских ученых Шона Дугласа и Идо Бахелета, с которого мы начали этот рассказ. В этой работе был сделан очередной шаг к практическому использованию ДНК-оригами для борьбы с раковыми клетками. Но для того, чтобы понять, в чем состоит новизна этого шага, следует опять сделать небольшое отступление. Уже в 2009 году ДНК-ящики были созданы не просто так, а для доставки лекарственного груза в нужные места организма. Они делались такого размера, чтобы в них умещались достаточно большие молекулы, обладающие способностью так или иначе вредить раковым клеткам. Эти ящики обладали своего рода «замками», которые позволяли крышке открываться только в присутствии раковых клеток, не раньше. Такие «замки» придумал еще в 1990 году гарвардский биохимик Шостак. Создав в пробирке случайную смесь ДНК-олигомеров, он вводил в эту смесь различные биологические молекулы и смотрел, с каким олигомером та или иная такая молекула соединяется. После этого можно было использовать этот олигомер как средство распознания данной биомолекулы в любом научном эксперименте, где она появлялась. Шостак назвал эти распознающие ДНК-олигомеры «аптамерами» и первым применил один такой аптамер для опознания белка тромбина, играющего важную роль в свертывании крови. Уже через несколько лет ведущие фармацевтические фирмы начали работы по созданию лекарств с присоединенным к ним аптамером, призванным «наводить» это лекарство на белок, который «повинен» в той или иной болезни.
Так вот, первые ДНК-ящики были снабжены замком в виде аптамера, призванного «распознать» определенный белок на поверхности раковой клетки и соединиться с ним. В процессе такого соединения аптамер, согласно сделанным расчетам, должен был приподнять крышку ящичка и выпустить наружу находящуюся в нем молекулу, призванную убить раковую клетку. Уже тогда Ротемунд указал, что у такого «замка» есть недостатки — он может открываться преждевременно, потому что аналогичный белок может встретиться ему в другом месте, на какой-нибудь другой клетке или в свободном виде. Упомянутая выше работа Дугласа — Бахелета как раз и была направлена на преодоление этого недостатка и, по мнению того же Ротемунда, сделала в этом направлении весьма существенный шаг. В этой работе ДНК-оригами был сконструирован по компьютерной программе, разработанной Дугласом. В соответствии с этой программой ДНК и олигомеры сами собой складывались в пространственную структуру, имеющую вид «бочонка» диаметром 35 нанометров. Внутри этой структуры находятся двенадцать «крючков» (особых олигомеров) для «подвешивания» на них двенадцати разных видов противораковых молекул, а снаружи расположены еще два таких же «крючка» — для двух аптамеров. Эти два аптамера являются своего рода «замком с шифром»: «бочонок» открывается лишь в том случае, если они оба найдут свои цели на поверхности подозрительной клетки.
Внимание!
Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Неизвестное наше тело. О полезных паразитах, оригами из ДНК и суете вокруг гомеопатии - Рафаил Нудельман», после закрытия браузера.