Онлайн-Книжки » Книги » 👨‍👩‍👧‍👦 Домашняя » Загадка падающей кошки и фундаментальная физика - Грегори Гбур

Читать книгу "Загадка падающей кошки и фундаментальная физика - Грегори Гбур"

133
0

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 16 17 18 ... 76
Перейти на страницу:



Идея снять падающую кошку, судя по всему, пришла ему в голову довольно поздно, после многих других исследований. Объект не имел ни военного значения, как изучение движения солдат, ни экономического, как изучение движения лошадей (благодаря тому что двигатель внутреннего сгорания Ньепса по-прежнему игнорировали, эпоха широкого использования автомобилей была еще впереди). И все же кошка садовника на Физиологической станции была мобилизована в интересах науки и сброшена перед объективом камеры в 1894 г. 22 октября 1894 г. Марей представил полученную последовательность снимков во Французской академии наук.

Если сам Марей считал фотографии падающей кошки простой демонстрацией своих новых фотографических возможностей, то реакция на них оказалась совершенно неадекватной. Его фотографии опубликовал буквально весь мир, а физики Французской академии, которые тоже заседали во время пресловутой презентации, согласно последующим сообщениям, пришли в ярость:

Почему кошка всегда падает на лапы? Этот вопрос недавно привлек к себе серьезное внимание Французской академии наук. Проблема, очевидно, оказалась весьма сложной, ибо это ученое собрание гениев до сих пор не сумело дать для нее исчерпывающего решения.

Когда месье Марей представил Академии результаты своих исследований, разгорелась оживленная дискуссия. Трудность состояла в том, чтобы объяснить, как кошка может перевернуть себя на пол-оборота без точки опоры [точки приложения рычага], которая могла бы помочь ей в этом. Один из членов заявил, что месье Марей представил им научный парадокс, который прямо противоречит самым элементарным механическим принципам.

5. Снова и снова

Где-то в промежутке между работой Парана в 1700 г. и фотографиями Марея в 1894 г. физика падающей кошки перешла из состояния решенной задачи, которую можно включать в учебники по элементарной физике, в состояние «научного парадокса». Но за эти две сотни лет сама физика тоже сильно изменилась и теперь определялась тем, что невозможно, в не меньшей степени, чем тем, что возможно.

Ключ к этим переменам — открытие и широкое признание законов сохранения, указывающих на то, что некоторые физические величины в изолированной системе изменяться не могут. Самый знаменитый из этих законов — закон сохранения энергии, который гласит, что энергия не возникает и не исчезает, а только переходит из одной формы в другую. К формам энергии относятся энергия движущихся объектов (кинетическая энергия), энергия, запасенная в гравитационном поле (гравитационная потенциальная энергия), тепловая энергия (энергия большого количества частиц, движущихся случайным образом, как в составе газа), химическая энергия (энергия, скрытая в химических связях в молекулах и атомах) и электромагнитная энергия (энергия, содержащаяся в свете, ультрафиолетовом и инфракрасном излучении, радио- и рентгеновских волнах). В специальной теории относительности Эйнштейна признается также, что масса сама по себе тоже является одной из форм энергии.

В качестве примера сохранения энергии можно назвать такой процесс, как работа автомобиля. Машина приводится в движение за счет превращения химической энергии (из бензина) в кинетическую, причем некоторая часть химической энергии неизбежно превращается в тепловую. Поднимаясь в гору, машина замедляется, по мере того как кинетическая энергия превращается в гравитационную потенциальную; при движении вниз с горы происходит обратный процесс. Когда водитель нажимает на педаль тормоза, кинетическая энергия автомобиля превращается в тепло за счет трения колес и тормозных колодок.

Намеки на существование какого-то принципа сохранения энергии прослеживаются до эпохи Древней Греции, хотя реальные формулировки этой идеи начали появляться только примерно во времена Исаака Ньютона. Первым сделал попытку численно определить энергию движущихся объектов соперник Ньютона Готфрид Лейбниц; он назвал кинетическую энергию vis viva, или «жизненной силой» системы. Но его vis viva, судя по всему, сохранялась только для астрономических тел, таких как планеты в движении, но не для движущихся тел на Земле; ученые тогда еще не признали тепло формой движения.

Современный закон сохранения энергии появился в середине XIX в. в результате работы двух очень странных исследователей: немецкого врача Юлиуса фон Майера (1814–1878) и британского пивовара Джеймса Прескотта Джоуля (1818–1889). Майер наткнулся на свое открытие, работая судовым врачом на голландском судне, ходившем в 1840 г. в Вест-Индию. Делая кровопускание больным морякам, он заметил, что из их вен вытекает кровь гораздо более красная, чем он мог бы ожидать; она больше походила на насыщенную кислородом артериальную кровь. И ему вдруг пришло в голову, что в жарких тропиках человеческому телу, чтобы поддерживать нормальную температуру, не нужно использовать так много кислорода из крови; поэтому венозная кровь здесь была краснее и более насыщена кислородом, чем должна была бы быть в более холодном климате. Майер понял, что существует некий баланс какого-то рода «энергии» между человеческим телом и окружающей его средой, и он прозорливо догадался, что этот принцип, возможно, действует в отношении всех физических процессов. Местные моряки дополнительно подкрепили его гипотезу; оказывается, они давно заметили, что температура океана после шторма всегда выше, чем перед ним; это движение воды, вызванное ветрами, превращалось в тепло.

Джоуль, в свою очередь, пришел к этому откровению в процессе работы над оптимизацией операций на своей пивоварне, первоначально планируя просто сравнить разные типы двигателей. До этого он использовал паровые двигатели, но хотел определить, не окажутся ли новоизобретенные электрические моторы более эффективными и потому менее затратными. Его исследование началось как чисто практический опыт, но потом Джоуля захватил вопрос о том, как энергия переходит из одной формы в другую. Он определил механический эквивалент тепла — сколько механической работы требуется проделать, чтобы произвести заданное количество тепла, — и в 1843 г. представил результаты Британской ассоциации содействия науке, где его сообщение было встречено каменным молчанием. Майер, опубликовавший работу в 1841 и 1842 гг., встретил еще более серьезное сопротивление своим идеям. Однако всего через несколько лет физики убедительно продемонстрировали связь между различными формами энергии и их взаимозаменяемость. С 1847 г. закон сохранения энергии признавался большинством исследователей.

Одним из теоретических следствий открытия закона сохранения энергии была смерть, по крайней мере в научном мире, идеи «машин вечного движения» — двигателей, которые, если их однажды запустить, могут работать вечно. Сохранение энергии указывает не только на существование некоего конечного источника энергии для любой изолированной машины, но и на то, что эта машина будет неуклонно превращать свою энергию в тепло, которое невозможно использовать. Такой вывод не помешал одному автору в 1897 г. предположить, хотя, вероятно, со значительной долей иронии, что вечное движение можно получить при помощи кошек.

1 ... 16 17 18 ... 76
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Загадка падающей кошки и фундаментальная физика - Грегори Гбур», после закрытия браузера.

Комментарии и отзывы (0) к книге "Загадка падающей кошки и фундаментальная физика - Грегори Гбур"