Читать книгу "Исчезающая ложка, или Удивительные истории из жизни периодической таблицы Менделеева - Сэм Кин"
Шрифт:
Интервал:
Закладка:
На периферии ядер такого размера, как у франция и астата, сильное ядерное взаимодействие практически сравнивается с электростатическими силами, поэтому удержать все протоны и нейтроны в таком ядре становится очень сложно. У франция 87 протонов, и они совершенно не хотят соприкасаться друг с другом. Еще в ядре франция насчитывается порядка 130 нейтронов, которые образуют неплохой буфер между положительно заряженными частицами. Но в то же время они делают ядро столь массивным, что сильному взаимодействию не удается распространиться до самых границ и погасить центробежные силы. Именно поэтому франций (и по схожим причинам астат) являются крайне нестабильными элементами. Соответственно, логично предположить, что ядра с еще бо́льшим количеством протонов, чем у франция, должны испытывать на себе еще более мощные силы отталкивания, и более тяжелые атомы окажутся еще менее стабильными, чем франций.
Однако это лишь отчасти верно. Вспомните Марию Гёпперт-Майер («Мать из С. Д. получила Нобелевскую премию»). Мы уже говорили о том, что она разработала теорию о долгоживущих «магических» элементах. Так она называла элементы, в атомах которых содержится два, восемь, двадцать, двадцать восемь и т. д. протонов или нейтронов. Стабильность таких элементов оказалась гораздо выше, чем у их соседей по периодической системе. Другие количества протонов и нейтронов – например, девяносто два – также образуют компактные и довольно стабильные ядра, в которых сильные взаимодействия надежно удерживают протоны вместе. Именно поэтому уран гораздо устойчивее франция и астата, хотя и тяжелее их. По мере того как мы спускаемся все ниже и ниже по периодической системе, элемент за элементом, борьба между сильными взаимодействиями и электрическими силами все сильнее напоминает резко снижающийся график биржевого тикера. На нем прослеживается общая тенденция к понижению, но в то же время возникают многочисленные флуктуации, когда берет верх то одна сила, то другая[169].
Исходя из этого общего принципа, ученые предположили, что срок существования элементов тяжелее урана будет асимптотически приближаться к 0,0. Но по мере того, как в 1950-е и 1960-е годы удавалось синтезировать все более тяжелые элементы, стало происходить нечто неожиданное. Теоретически магические ядра должны встречаться до бесконечности, и оказалось, что гораздо ниже урана должен располагаться элемент с условно стабильным ядром – № 114. Более того, ученые из Калифорнийского университета в Беркли вычислили, что 114-й элемент может существовать значительно дольше, чем атомы примерно десяти предшествующих ему тяжелых элементов. Учитывая, как ничтожен период полураспада изотопов этих элементов (в лучшем случае – несколько микросекунд), подобная идея казалась нелогичной и дикой. Упаковка все новых протонов и нейтронов в искусственные ядра напоминает упаковку взрывчатки: чем больше частиц в ядре, тем более сильное напряжение оно испытывает. Но казалось, что элемент № 114 должен быть исключительно стабильным для такого крупного атома. Не менее странно (как минимум на бумаге) было и то, что элементы с атомными номерами 112 и 116 также должны испытывать на себе положительное влияние близости 114-й клетки. Даже имея «почти магическое» количество протонов, они должны были обладать сравнительно высокой стабильностью. Ученые окрестили это скопление элементов «островом стабильности».
Вдохновившись собственной метафорой и ощутив себя отважными мореплавателями, ученые принялись готовиться к завоеванию этого острова. Они обсуждали поиски «Атлантиды химических элементов», а некоторые, подобно старинным мореходам, даже вычерчивали в сепии карты неизведанных ядерных морей. Казалось, никто бы не удивился, если бы эти моря кишели спрутами. Попытки достичь этого острова сверхтяжелых элементов породили одну из самых захватывающих физических дисциплин. Ученые пока не добрались до этих берегов (чтобы получить по-настоящему стабильные «дважды магические» элементы, требуется искать способы внедрения все новых нейтронов в элементы-мишени), но уже прочесывают отмели, отыскивая удобную бухту, чтобы высадиться на берег.
Причудливая карта легендарного «острова стабильности» – области сверхтяжелых элементов. Ученые надеются, что этот «остров» позволит им значительно расширить границы современной таблицы Менделеева. В левом нижнем углу – символ свинца (Pb), край основной, «континентальной», части периодической системы. Он отделен проливом нестабильных элементов от острова, где высятся условно стабильные пики тория и урана. Далее открывается бескрайнее море. Автор карты – Юрий Цолакович Оганесян, работающий в Объединенном институте ядерных исследований (Дубна)
Неудивительно, что перед «островом стабильности» раскинулась область очень неустойчивых элементов, примерно в центре которой находится франций. Восемьдесят седьмой элемент находится между магическим ядром № 82 и условно стабильным ядром № 92. Поэтому некоторые нейтроны и протоны франция постоянно «норовят выпрыгнуть» из атома и отправиться в свободное плавание. На самом деле, из-за крайне непрочной структуры ядра франций не только является самым нестабильным элементом, встречающимся в природе, но и уступает по стабильности даже всем искусственно полученным элементам вплоть до сто четвертого – резерфордий. Если правомерно
выделить на карте такой «пролив нестабильности», то франций будет пускать пузырьки с самого его дна.
Однако франций в природе встречается чуть чаще, чем астат. Почему? Дело в том, что многие радиоактивные элементы, расположенные вокруг урана, на том или ином промежуточном этапе распада превращаются во франций. А что же франций? Вместо того чтобы подвергаться обычному альфа-распаду и в результате (потеряв два протона) превращаться в астат, этот атом более чем в 99,9 % случаев облегчает свое перегруженное ядро, претерпевая бета-распад, и становится радием. Затем радий проходит целый ряд стадий альфа-распада, минуя астат. Иными словами, механизм радиоактивного распада многих нестабильных атомов на клетке франция немного пробуксовывает – именно поэтому количество франция в земной коре измеряется несколькими сотнями граммов. В то же время франций не позволяет своим атомам превращаться в астат, из-за чего астат является еще более редким. Загадка решена.
Внимание!
Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Исчезающая ложка, или Удивительные истории из жизни периодической таблицы Менделеева - Сэм Кин», после закрытия браузера.