Читать книгу "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике - Джон Дербишир"
Шрифт:
Интервал:
Закладка:
В работе Монтгомери 1973 года содержатся два результата. Первый — это теорема об общих статистических свойствах интервалов между нулями дзета-функции. В этой теореме предполагается справедливость ГР. Второй результат — гипотеза. Она утверждает, что парная корреляционная функция для этих интервалов именно такова, как Монтгомери описал ее в разговоре с Дайсоном. Важно понимать, что это гипотеза. Монтгомери не смог ее доказать даже в предположении о справедливости ГР. И никому другому тоже не удалось этого доказать.
Большая часть свойств нулей дзета-функции Римана, о которых пишут или рассказывают, как и большая часть идей, возникших за последние 30 лет, подобным же образом носят гипотетический характер. В этой области науки наблюдается явный дефицит твердых доказательств. Отчасти это вызвано тем, что после того, как Монтгомери выявил связь между нулями дзета-функции и собственными значениями, исследованиями ГР занялось много физиков и прикладных математиков. Сэр Майкл Берри[171] любит по этому поводу цитировать лауреата Нобелевской премии по физике Ричарда Фейнмана: «Известного куда больше, чем удается доказать». Отчасти же это происходит потому, что ГР представляет собой очень, очень упрямую проблему. ГР посвящено такое грандиозное количество литературы, что приходится все время напоминать себе, что на самом деле о нулях дзета-функции лишь очень мало известно наверняка и даже при всем всплеске интереса в течение нескольких последних лет математически неопровержимые результаты по-прежнему появляются лишь изредка, через длительные интервалы времени.
V.
Институт высших исследований в Принстоне, Нью-Джерси, находится всего в 32 милях от исследовательского центра Белловских лабораторий компании AT&T в Мюррей-Хилл. В 1978 году Хью Монтгомери читал в Принстоне лекции по теме, которая в то время называлась «гипотеза Монтгомери о парных корреляциях». Среди присутствовавших был молодой исследователь Эндрю Одлыжко, работавший в одном из отделов AT&T. Как раз в тот момент они приобрели суперкомпьютер Cray-1. Исследователи с воодушевлением строили планы запуска на нем своих программ и готовились к знакомству с теми алгоритмами, которые отвечали его архитектуре.
Размышляя по поводу лекции Монтгомери, Одлыжко рассуждал следующим образом. Гипотеза Монтгомери утверждает, что интервалы между нулями дзета-функции подчиняются некоторому статистическому закону. Этот закон возникает также при исследовании определенного семейства квантовых динамических систем, которые отвечают модели ГУА. Статистические свойства этого семейства были предметом интенсивного изучения в течение ряда лет. Однако статистические свойства нулей дзета-функции исследовались совсем мало. Пользу могло бы принести восстановление баланса — т.е. исследование статистических свойств нулей дзета-функции.
К этому Эндрю Одлыжко и приступил. Используя в качестве платформы для вычислений свободные процессорные мощности суперкомпьютера Cray в Белловских лабораториях[172] (ограниченные, однако, пятичасовым интервалом для каждого этапа вычислений), он с высокой точностью (около 8 десятичных знаков) получил первые 100 000 нетривиальных нулей дзета-функции Римана, исходя из формулы Римана-Зигеля. Далее, чтобы составить какое-то представление о происходящем много выше по критической прямой, он получил еще 100 000 нулей, начиная с 1000 000 000 001-го. Затем он прогнал эти два множества нулей через разнообразные статистические тесты, чтобы сравнить их с собственными значениями матриц, представляющих ГУА-операторы. Результаты этой работы были опубликованы в 1987 году в знаменитой статье, озаглавленной «О распределении интервалов между нулями дзета-функции».
Результаты оказались не полностью убедительными. Как сам Одлыжко весьма деликатно выразился в своей статье, «все полученные к настоящему моменту данные довольно неплохо согласуются с предсказаниями модели ГУА». Получилось несколько больше малых интервалов, чем это предсказывала модель ГУА. Тем не менее результаты Одлыжко произвели достаточное впечатление, чтобы привлечь внимание исследователей из нескольких различных областей. Дальнейшая работа позволила прояснить ситуацию с несоответствиями, отмеченными в статье 1987 года, и «гипотеза Монтгомери о парных корреляциях» стала законом Монтгомери-Одлыжко.[173]
Закон Монтгомери-Одлыжко
Распределение интервалов между последовательными нетривиальными нулями дзета-функции Римана (в правильной нормировке) статистически тождественно распределению собственных значений ГУА-оператора.
О природе полученных Одлыжко результатов я могу рассказать лишь вкратце. С этой целью я воспроизвел их на своем персональном компьютере, используя список нулей, который Одлыжко любезно разместил на своем веб-сайте.[174] Чтобы избежать всяких аномалий, связанных с малыми значениями, я взял нули от 90 001-го до 100 000-го, если считать вверх по критической прямой от z = 1/2. Это составляет 10 000 нулей — вполне достаточно, чтобы извлечь из них некоторый статистический смысл. Нуль с номером 90 001 расположен в точке 1/2 + 68 194,3528i, а 100 000-й нуль — в точке 1/2 + 74 920,8275i (если округлять до 4 знаков после запятой). Итак, изучим статистические свойства последовательности из 10 000 вещественных чисел, которая начинается числом 68 194,3528, а заканчивается числом 74 920,8275.
Мы говорили в главе 13.viii, что по мере движения вверх по критической прямой нули делаются в среднем ближе друг к другу и поэтому необходимо внести поправку — растянуть верхнюю часть выбранного интервала. Это совсем не сложно сделать, умножив каждое число на его логарифм. У бóльших чисел бóльшие логарифмы, а это как раз и требуется для того, чтобы выровнять среднее расстояние между нулями. В этом и состоит смысл слова «нормировка» в приведенной выше формулировке закона Монтгомери-Одлыжко. Теперь наша последовательность начинается числом 759 011,1279 и заканчивается числом 840 925,3931.
Внимание!
Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике - Джон Дербишир», после закрытия браузера.