Читать книгу "В погоне за Солнцем - Ричард Коэн"
Шрифт:
Интервал:
Закладка:
В животном мире часто происходит то же, что и в растительном. Луна-рыба (в английском – sunfish, рыба-солнце), поразительно уродливое, почти бесхвостое создание, вырастающее до двух метров в длину, – самая тяжелая костная рыба на свете – живет в глубинах океана в сезоны бурь (ее называют “морским лежебокой”) и поднимается на поверхность погреться на солнышке в ясную погоду. В пустыне Сахаре муравьи-фуражиры ориентируются на поляризацию солнечного света и на магнитное поле Земли, чтобы потом воссоздавать в памяти кратчайший путь домой. Такие животные, как альбатросы и черепахи, которые проводят почти всю жизнь в глубине моря или на его поверхности, используют солнце как навигационный маяк. Крошечный песчаный крабик Talitrus, нервное вещество которого достигает едва ли миллиметра в длину, способен вычислить время дня с точностью до получаса исходя из угла, образованного его телом и положением солнца. В соответствии с изменением освещенности множество животных способны сезонно менять расцветку, изменяя пигментацию и маскировочную окраску вместе с окружающей средой.
Солнце играет роль и в репродуктивной деятельности животных. По мере захода солнца косяки сельди сбиваются плотнее и заплывают на мелководье, где мечут икру, защищенные своей многочисленностью. Когда солнце встает, косяки рассеиваются[525]. Множество ярких тропических птиц живут в верхнем слое леса, где они нежатся в море солнечного света и могут выставлять свою красоту потенциальным партнерам с максимальным эффектом. Другие пернатые с буйной расцветкой пользуются пробивающимися солнечными лучами, достигающими нижних уровней леса, чтобы устраивать брачные акробатические номера напоказ, мерцая раскраской в рассеянном свете “как танцоры под вращающимся дискотечным шаром”[526].
Бабочки геликониды используют поляризованный свет для выбора брачных партнеров, их использование визуальных сигналов в брачном выборе является примером использования света, которое также может обладать и адаптивной ценностью в густом лесу, где освещение сильно варьируется по цвету и интенсивности. Но встает вопрос, какая стимулированная солнцем деятельность находится за пределами нашего восприятия. “Некоторые птицы могут видеть то, чего люди просто не видят”, – говорит доктор Миеко Чу из Корнелльской орнитологической лаборатории; например, лазоревки различают друг друга с совершенно недоступной для человека точностью. Уже довольно давно известно, что птицы (как и некоторые ящерицы, рыбы и насекомые) способны видеть в ультрафиолетовом спектре. Но лишь в 1998 году ученые обнаружили, что некоторые виды оперений отражают волны, невидимые для человеческого глаза: в нашем глазу три типа колбочек, а у птиц четыре. Это открывает для них области спектра электромагнитного излучения за пределами нашего кругозора и сильно расширяет диапазон их цветовосприятия.
Летом 1944 года Карл фон Фриш (1886–1982), который в 1973 году разделил Нобелевскую премию по физиологии с Конрадом Лоренцем, обнаружил, что пчелы объясняют своим товаркам в улье, куда следует лететь, двигая задней частью тела. Пчелы могут “танцевать” два вида танцев – один круговой, другой в форме восьмерки, которые Фриш интерпретировал, приводя его собственный пример, как “нектар в 1,5 км отсюда, в 30° от солнца”. Он также установил режимы пчелиной коммуникации, показав их чувствительность к ультрафиолетовому и поляризованному свету. Они могут вылетать по направлению, которое корректируется в связи со смещением солнца, и даже прокладывать маршрут для отдыха через солнечные места. Это умение выдерживать постоянный угол по отношению к солнцу, несмотря на временной сдвиг, немцы называют очаровательным словом Winkeltreue[527].
Когда пчела прибывает обратно в улей, повстречав новые цветы, она танцует на площадке перед входом (пчелиная колония, населяющая улей, составляет 20 тыс. пчел зимой и 60 тыс. летом), сперва описывая окружность, потом пересекая ее, покачивая животом и энергично жужжа. Затем она входит внутрь и начинает заново: при достаточной стимуляции пчела может танцевать около 4 ч. Чем дальше пчела углубляется в улей, тем дальше оказывается источник пыльцы. А поскольку соты в улье расположены вертикально, танцевальные па не могут напрямую указывать на цветок и вместо этого ориентированы на солнце. Если пчела пересекает окружность по вертикали, тогда источник пищи находится на одной линии с солнцем. Если цель, скажем, в 15° правее, то танцевальное движение будет пересекать окружность на 15° правее от вертикали. Пчелы-работники окружают танцора, запоминают информацию и затем вылетают на поиски. Когда они возвращаются с добычей, они также танцуют, и вскоре начинает активно собираться рабочая сила[528]. В восторге от своего открытия Фриш принялся за изучение того, каким образом пчелы могут передавать информацию о положении солнца. В это было сложно поверить, но ученый все-таки сделал вывод, что пчелы могут предсказать положение солнца в любой заданный момент времени, так что, если бы они танцевали без перерыва, постоянно меняя картину танца, они воспроизводили бы движение солнца[529].
Муравьи и пауки тоже находятся среди насекомых, которые используют поляризованный свет в качестве оптического компаса. Последние специально оснащены парой дополнительных глаз. Эти глаза не видят в обычном смысле слова, но у них есть встроенные фильтры, которые определяют направление поляризации. Активность у пауков обычно наступает после захода солнца, они используют этот механизм для нахождения обратного пути к своим гнездам после вылазок за пропитанием[530].
Из тысяч видов муравьев некоторые используют солнце для ориентации сходным с пчелами образом. Они также имеют близкую к пчелам спектральную чувствительность зрения. Великий биолог Э. О. Уилсон назвал эти свойства “почти фантастической способностью к запоминанию маршрута и угловой скорости солнца”[531]. В мозгу насекомых во время их путешествий за провиантом происходит нечто невероятное: рабочий муравей идет по следу и кружит, “описывая замысловатые поисковые узоры”, пока не находит пищу; в момент каждого изгиба и поворота маршрута он фиксирует направление на солнце и угол поворота. На обратном пути он инвертирует средний угол на 180° – непростой трюк: человеку для этого понадобился бы компас, секундомер и векторный анализ.
Внимание!
Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «В погоне за Солнцем - Ричард Коэн», после закрытия браузера.