Онлайн-Книжки » Книги » 👨‍👩‍👧‍👦 Домашняя » Алекс в стране чисел. Необычайное путешествие в волшебный мир математики - Алекс Беллос

Читать книгу "Алекс в стране чисел. Необычайное путешествие в волшебный мир математики - Алекс Беллос"

245
0

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 93 94 95 ... 103
Перейти на страницу:

Для заданной прямой и точки вне ее существует самое большее одна прямая, проходящая через эту точку и параллельная данной прямой.

Можно показать, что постулат о параллельных имеет отношение к геометрии двух различных типов поверхности, где все зависит от фразы «самое большее одна прямая», которая на языке математики означает «или одна прямая, или ни одной». В первом случае, проиллюстрированном на рисунке, для любой прямой L и точки P существует только одна проходящая через P прямая, параллельная L (она обозначена как L'). Этот вариант постулата о параллельных применим к поверхности наиболее очевидного типа — плоской поверхности, такой как лист бумаги, лежащий у вас на столе.

Постулат о параллельных


Теперь рассмотрим второй вариант постулата, в котором для любой прямой L и точки P вне ее нет ни одной прямой, проходящей через P и параллельной L. С ходу нелегко сообразить, что это может быть за поверхность. В какую ужасную даль от Земли нам придется отправляться на ее поиски?

Да никуда не придется. Мы так и останемся на Земле! Представим себе, например, что наша линия L — это экватор, и вообразим, что точка P — это Северный полюс. Единственные прямые линии, идущие через Северный полюс, — это линии долготы, такие как Гринвичский меридиан, и при этом все линии долготы пересекают экватор. Таким образом, прямой линии, которая проходила бы через Северный полюс и была бы при этом параллельна экватору, просто нет.

Постулат о параллельных говорит о том, что кроме геометрии поверхностей существует еще и геометрия поверхностей сферических. «Начала» имели дело с плоскими поверхностями, и в течение 2000 лет именно они оставались в фокусе математических изысканий. Сферические же поверхности, например поверхность Земли, представляли тогда больший интерес для штурманов и астрономов, чем для теоретиков. Лишь к началу XIX века математики создали теорию, которая охватывала как плоские, так и сферические поверхности, а произошло это только после того, как ученые познакомились с поверхностями третьего типа — гиперболическими.

* * *

Среди вознамерившихся вывести постулат о параллельных из первых четырех постулатов и тем самым доказать, что это вовсе не постулат, а теорема, решительнее всех был настроен, пожалуй, Янош Бойяи (1802–1860) — студент из Трансильвании, обучавшийся инженерному делу. Его отец Фаркаш — тоже математик! — исходя из собственного неудачного опыта хорошо представлял себе, какие испытания уготованы сыну на сем пути. «Бога ради, заклинаю тебя, брось это дело, — убеждал он сына. — Оно опаснее, чем чувственные удовольствия, поскольку способно точно так же поглотить все твое время и лишить тебя здоровья, душевного спокойствия и счастья в жизни». Но Янош упрямо игнорировал отцовские увещевания; более того, в своем бунтарстве он был даже готов рассматривать возможность ложности этого евклидовского постулата! Не надо забывать, что для математиков «Начала» были чем-то вроде Библии для христиан — книгой, содержащей непререкаемую, священную истину. И хотя вопрос о том, является ли пятый постулат аксиомой или теоремой, обсуждался, и довольно активно, никто до Бояйи-младшего не осмеливался предположить, что это утверждение Евклида не совсем верно. Прошло время, и оказалось, что постановка этого вопроса открыла окно в новый мир.

Постулат о параллельных утверждает, что для любой заданной прямой и точки вне ее существует самое большее одна параллельная прямая, проходящая через указанную точку. Яношу хватило смелости предложить, что для любой заданной прямой и точки вне ее имеется более одной параллельной прямой, проходящей через эту точку. Хотя было не слишком ясно, как представить себе поверхность, для которой это утверждение верно, Янош понял, что геометрия, следующая из этого утверждения, взятого вместе с первыми четырьмя постулатами, по-прежнему остается математически последовательной. Это было революционным открытием, и Янош сумел осознать его судьбоносное значение. В 1823 году Янош написал отцу письмо, в котором заявлял: «Из ничего я создал новую вселенную».

На руку Яношу, вероятно, было то обстоятельство, что он работал один, и вне стен какого-либо математического заведения, и потому был в меньшей степени зажат в рамки традиционных воззрений. Более того, даже уже совершив свое великое открытие, он не думал, что станет математиком. После окончания университета Бояйи вступил в Австро-Венгерскую армию, где, по имеющимся отзывам, проявил себя среди сослуживцев как один из лучших фехтовальщиков и танцоров. Кроме этого, он был замечательным музыкантом и однажды, вызвав на дуэль сразу 13 офицеров, поставил условие, что в случае победы сыграет проигравшему пьесу на скрипке.

А тем временем другой, неизвестный Яношу математик, живший в еще большем, чем Трансильвания, удалении от европейских научных центров, тоже размышлял о пятом постулате. Он неуклонно продвигался вперед, несмотря на то что никто из коллег не поддерживал и не принимал его работы. В 1826 году профессор Казанского университета Николай Иванович Лобачевский (1792–1856) направил свою статью, в которой подвергал сомнению истинность постулата о параллельных, в журнал «Записки физико-математического отделения». Статью (она называлась «О началах геометрии») не приняли, после чего Лобачевский решил напечатать ее в университетском «Казанском вестнике», где ее, естественно, почти никто не заметил. Позже петербургские профессора подвергли его работу жесточайшей критике.

Ирония судьбы — в истории низвержения пятого постулата Евклида с пьедестала незыблемой истины был еще один драматичный момент: за несколько десятилетий до Яноша Бойяи и Николая Лобачевского еще один ученый сделал то же самое открытие, причем произошло это в самом сердце математической науки; однако этот человек не стал обнародовать свои результаты среди коллег. Почему Карл Фридрих Гаусс — величайший математик своего времени[70] — решил сохранить свою работу о постулате о параллельных в тайне, до сих пор точно не знает никто. Принято считать, что он не хотел вступать в распри с университетскими коллегами по поводу авторитета Евклида.

Однако, прочитав о результатах Яноша, опубликованных в 1831 году в приложении к книге его отца Фаркаша, Гаусс дал понять, что он еще раньше высказал предположение о возможной неправомерности постулата о параллельных. Гаусс написал своему старому университетскому товарищу Фаркашу письмо, в котором отозвался о Яноше как о «гении первой величины», однако же добавил, что не может воздать должной похвалы его замечательному научному открытию: «Ибо хвалить его означало бы хвалить самого себя. Содержание его труда целиком совпадает с моими собственными открытиями, некоторым из которых исполнилось уже 30 или 35 лет. Поначалу я собирался записать все это, дабы оно по крайней мере не ушло в небытие вместе со мной. Поэтому приятной неожиданностью стало известие, что я избавлен от сего труда, и в особенности я рад, что не кто иной, как сын моего старого друга, помог мне в этом деле». Узнав, что первым к цели пришел Гаусс, Янош очень огорчился. Когда же, уже годы спустя, он узнал, что русский математик Лобачевский тоже опубликовал доказательство раньше него, он был просто потрясен, а потом уверовал в то, что Лобачевский — вымышленный персонаж, изобретенный Гауссом в качестве изощренной уловки с целью лишить его, Яноша, первенства.

1 ... 93 94 95 ... 103
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Алекс в стране чисел. Необычайное путешествие в волшебный мир математики - Алекс Беллос», после закрытия браузера.

Комментарии и отзывы (0) к книге "Алекс в стране чисел. Необычайное путешествие в волшебный мир математики - Алекс Беллос"