Читать книгу "Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики - Леонард Сасскинд"
Шрифт:
Интервал:
Закладка:
Индийский физик Ашок Сен был первым, кто попробовал собрать экстремальную черную дыру и проверить струнную теорию энтропии черных дыр. В 1994 году он подошел к этому очень близко, но все же недостаточно для завершения истории. В среде физиков-теоретиков Сена ценят очень высоко. Он имеет репутацию глубокого мыслителя и технического волшебника. Застенчивый, хрупкий человек с исключительно сильным мелодичным бенгальским акцентом, из-за которого его иногда трудно понять. Тем не менее его лекции славятся своей ясностью. В строго педагогической манере он записывает каждое новое понятие на доске. Идеи разворачиваются с неизменной последовательностью, которая делает все сказанное кристально ясным. Его научным статьям тоже присуща эта совершенная ясность.
Я даже не знал, что Сен занимался черными дырами. Но вскоре после того, как я вернулся в Соединенные Штаты из поездки в Кембриджд, кто-то — думаю, это была Аманда Пит — вручил мне для прочтения его статью. Она была длинная и техническая, но в последних нескольких абзацах Ашок применял идеи теории струн — те, что я описывал в Ратджерсе, — чтобы вычислить энтропию нового класса экстремальных черных дыр.
Черная дыра Сена была сделана из деталей, о которых мы знали в 1993 году, — фундаментальных струн и шести дополнительных свернутых размерностей пространства. То, что сделал Сен, было простым, но очень ясным развитием моих собственных ранних идей. Его главная инновация состояла в том, чтобы начать со струны не только очень сильно возбужденной, но также еще и многократно охватывающей одно из свернутых измерений. В упрощенном цилиндрическом мире — расширенной версии Лайнландии — витки струны выглядят как резиновая лента, обернутая вокруг куска пластиковой трубы.
Такие струны тяжелее обычных частиц, поскольку требуется энергия для того, чтобы растянуть их вокруг цилиндра. В типичной теории струн масса витка струны может составлять несколько процентов планковской массы.
Затем Сен взял простую струну и дважды обернул ее вокруг цилиндра.
Струнные теоретики сказали бы, что эта струна имеет винтовое число[144], равное 2, и она еще тяжелее, чем струна, делающая один виток. Но что, если струна намотана вокруг свернутого измерения не один или два раза, а миллиарды раз?
На количество оборотов струны вокруг свернутого измерения пространства нет ограничений. В результате она может сравниться по массе со звездой или даже с галактикой. Но место, которое она занимает в обычном пространстве, то есть в несвернутых размерностях обычного трехмерного пространства, очень мало. Вся эта масса заключена в столь крошечном пространстве, что она гарантированно будет черной дырой.
Сен применил еще одну хитрость, еще один ингредиент теории струн образца 1993 года: извивы, движущиеся вдоль струны. Информация должна была скрываться в особенностях этих извивов, в точности как я описывал это годом ранее.
Извивы на эластичной струне не остаются неподвижными. Они распространяются вдоль струны, подобно волнам: одни по часовой стрелке, а другие против. Два извива, движущиеся в одном направлении, гонятся друг за другом по струне, никогда не сталкиваясь. Однако если две волны движутся в противоположных направлениях, они сталкиваются, порождая сложную мешанину. Поэтому Сен решил хранить всю скрытую информацию в волнах, движущихся «в ногу» по часовой стрелке без всяких столкновений.
Когда все ингредиенты были собраны и различные рукоятки включены, у струны Сена не было других возможностей, кроме как превратиться в черную дыру. Но вместо обычной черной дыры из-за накручивания струны вокруг свернутого измерения появляется совершенно особый тип экстремальной черной дыры.
Экстремальная черная дыра электрически заряжена. Но где же электрический заряд? Ответ был известен уже много лет: накручивание струны на компактизированное измерение придает ей электрический заряд. Каждый оборот струны добавляет одну единицу заряда. Если струна намотана в одном направлении, получается положительный заряд, если в противоположном — отрицательный. Гигантские многократно намотанные струны Сена также могут рассматриваться как сгустки электрического заряда, скрепляемые гравитацией, — иными словами, как заряженная черная дыра.
Площадь — это геометрическое понятие, а геометрия пространства и времени управляется эйнштейновской общей теорией относительности. Единственный способ узнать площадь горизонта черной дыры — это вывести ее из уравнений Эйнштейна для гравитации. Сен мастерски владел этими уравнениями и легко (легко для него) решил их для специального сконструированного им типа черных дыр, а затем вычислил площадь горизонта.
И тут случилась катастрофа! Когда уравнения были решены и площадь горизонта подсчитана, результат оказался равным нулю! Иными словами, вместо замечательной обширной оболочки горизонт сжался до размеров точки пространства. Вся энтропия, запасенная в извивающихся, змеящихся струнах, была, похоже, сконцентрирована в крошечной точке. Это не только было проблемой для черных дыр, но и прямо противоречило голографическому принципу, утверждающему, что максимальная энтропия области пространства равна ее площади в планковских единицах. Где-то была допущена ошибка.
Сен ясно видел, что возникла проблема. Уравнения Эйнштейна классические, то есть они игнорируют эффекты квантовых флуктуаций. Без квантовых флуктуаций электрон в атоме водорода упал бы на ядро, и весь атом стал бы по размеру не больше протона. Но квантовые движения в основном состоянии, вызванные принципом неопределенности, делают атом в 100 000 раз больше ядра. Сен понял, что то же самое может происходить и с горизонтом. Хотя классическая физика предсказывает, что он должен сжиматься в точку, квантовые флуктуации могли бы расширить его до того, что я называю растянутым горизонтом.
Сен внес необходимые поправки: быстрая, «на обороте конверта», оценка показала, что энтропия и площадь растянутого горизонта действительно пропорциональны друг другу. Это был еще один триумф струйной теории энтропии горизонта, но, как и прежде, победа была неполной. Точность вновь ускользнула; оставалась неопределенность относительно того, насколько именно квантовые флуктуации могут растянуть горизонт. Блестящая работа Сена по-прежнему заканчивалась расплывчатой тильдой. Максимум, что он мог сказать, это то, что энтропия черной дыры пропорциональна площади горизонта. Это было почти попадание, но «почти» не считается. «Последний гвоздь в гроб» еще предстояло рассчитать.
Внимание!
Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики - Леонард Сасскинд», после закрытия браузера.