Онлайн-Книжки » Книги » 👨‍👩‍👧‍👦 Домашняя » Рождение сложности. Эволюционная биология сегодня. Неожиданные открытия и новые вопросы - Александр Марков

Читать книгу "Рождение сложности. Эволюционная биология сегодня. Неожиданные открытия и новые вопросы - Александр Марков"

241
0

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 92 93 94 ... 116
Перейти на страницу:

Мобильные генетические элементы впервые были обнаружены Барбарой МакКлинток в 1951 году у кукурузы. Однако МГЭ слишком долго считались «генетической экзотикой», их распространенность и эволюционная роль недооценивались, и в результате свою заслуженную Нобелевскую премию за это открытие МакКлинток получила лишь в 1983 году, когда ей самой было уже за 80.

Поначалу эти подвижные вирусоподобные участки генома интерпретировали как «геномных паразитов», «эгоистическую» или «мусорную» ДНК. В последнее время все яснее становится огромная эволюционная роль этих элементов. Они придают геному свойство, которое в зависимости от субъективного восприятия называют либо «нестабильностью», либо «пластичностью». В первом случае подчеркивается потенциальный вред геномных перестроек, индуцируемых МГЭ, во втором — их потенциальная польза, создание материала для отбора, повышение полиморфизма и приспособляемости.

МГЭ придают геному нестабильность не только своими беспорядочными прыжками. Если какому-нибудь транспозону удастся как следует размножиться, это значит, что в геноме появится множество одинаковых фрагментов генетического «текста». А это резко повышает вероятность ошибок в ходе копирования ДНК и рекомбинации. Действительно, сложно не ошибиться при переписывании или редактировании текста, изобилующего повторами.

Но геномные перестройки, индуцируемые МГЭ, не являются хаотичными. Например, многие транспозоны способны встраиваться не в любое место генома, а только туда, где есть определенные «предпочтительные» для данного МГЭ последовательности нуклеотидов. Это делает их передвижения в известной мере предсказуемыми, закономерными. Распределение повторов по геному повышает вероятность не любых, а строго определенных перестроек. Например, участок генома, заключенный между двумя одинаковыми последовательностями (например, между двумя копиями транспозона), с большой вероятностью может быть «потерян» при репликации. Если такая потеря окажется выгодной, она будет поддержана отбором и закрепится в череде поколений, если нет, отбор будет ее отбраковывать, но тем не менее этот участок все равно будет выпадать из генома снова и снова (такое явление наблюдается, например, у возбудителя чумы Yersinia pestis)[95].

Как у бактерий, так и у высших организмов МГЭ могут служить своеобразными «рецепторами стресса», резко активизируя свои прыжки в критических для организма ситуациях и приводя к вспышкам мутагенеза. Это может способствовать приспособляемости видов. Когда условия жизни резко ухудшаются, то это по сути дела означает, что имеющийся у организма геном перестает соответствовать требованиям среды. В этой ситуации рост изменчивости может оказаться единственным возможным выходом (см. главу «Управляемые мутации»). Все это придает эволюционным изменениям, происходящим при участии МГЭ, не совсем случайный характер.

—————

Вирусы и мобильные элементы: кто от кого произошел? Родство вирусов и МГЭ не вызывает сомнений, однако не совсем ясно, кто из них появился раньше и кто от кого произошел. Не исключено, что началось все с мобильных элементов, которые могли просто самозародиться в геномах примитивных организмов, и произойти это могло еще на заре жизни. Постепенно усложняясь, МГЭ в дальнейшем превратились в настоящих вирусов. По крайней мере некоторые типы вирусов, скорее всего, возникли именно таким путем. Это прежде всего ретровирусы, к числу которых относится вирус ВИЧ. Ретровирусы отличаются от остальных вирусов тем, что встраивание в хозяйский геном является обязательной частью их жизненного цикла. Наследственный материал ретровируса хранится в форме РНК. Когда ретровирус попадает в клетку, ее рибосомы начинают синтезировать вирусные белки по «инструкциям», записанным в вирусной РНК. Одним из этих белков является фермент обратная транскриптаза (РНК-зависимая ДНК-полимераза), функция которой состоит в переписывании информации из РНК в ДНК. Этот процесс называется обратной транскрипцией; отсюда и «ретро» в названии вируса. Обратная транскриптаза осуществляет «переписывание» вирусного генома в хозяйские хромосомы.

Ближайшими родственниками ретровирусов являются ретро-транспозоны — мобильные генетические элементы, широко распространенные в геномах эукариот. Ретровирусы, встроившиеся в геном хозяина, и ретротранспозоны очень похожи друг на друга. Те и другие представляют собой фрагменты ДНК, содержащие более или менее стандартный комплект генов, необходимых для собственного копирования и встраивания в хозяйскую ДНК. Гены эти в большинстве своем сходны у ретровирусов и ретротранспозонов. Обе разновидности «ретроэлементов» размножаются при помощи обратной транскрипции, то есть переписывания информации с РНК на ДНК.

Большинство специалистов склоняется к тому, что исторически первыми появились ретротранспозоны, а не ретровирусы. Они проще устроены, и самые простые из них вполне могли «самозародиться» в геномах примитивных организмов в результате случайных мутаций. По-видимому, это произошло еще на уровне прокариот. Ретровирусы, скорее всего, являются результатом некоторого усложнения или, если угодно, «совершенствования» ретротранспозонов. В дальнейшем, конечно, имели место и обратные процессы — ведь ретровирус легко может снова превратиться в ретротранспозон, если потеряет инфекционность в результате какой-нибудь мутации.

—————

По-видимому, многие крупные прогрессивные преобразования в эволюции высших организмов были связаны с активностью МГЭ.

От «прирученного» ретротранспозона ведет свою родословную фермент теломераза, отвечающий за восстановление кончиков хромомосом, которые имеют обыкновение укорачиваться после каждой репликации. Теломераза играет важную роль в процессах старения и в образовании раковых опухолей. Старение связано с низкой активностью теломеразы, рак — со слишком высокой. Для восстановления кончиков хромосом теломераза использует РНК-матрицу и механизм обратной транскрипции. А это не что иное, как главное «ноу-хау» ретротранспозонов и ретровирусов. Теломеразная регуляция — важнейший механизм поддержания целостности сложного многоклеточного организма, в котором ни одна клетка не имеет права делиться, когда ей вздумается.

У мобильных элементов древние позвоночные позаимствовали также и фермент транспозазу, который умеет вырезать и перемещать участки ДНК. Потомки этой транспозазы — белки RAG. Эти белки собирают из кусочков гены антител, по-разному комбинируя фрагменты ДНК в зреющих лимфоцитах. Так достигается огромное разнообразие этих защитных белков при небольшом количестве имеющихся в геноме фрагментов-заготовок (см. главу «Управляемые мутации»). Великолепная иммунная система позвоночных была одной из главных предпосылок их эволюционного успеха. И она, как мы теперь понимаем, является щедрым даром ближайших родственников вирусов.

—————

Древние млекопитающие позаимствовали у ретротранспозона ген, необходимый для развития плаценты. Недавно обнаруженный ген Reg10 мог сыграть важную роль в появлении плацентарных млекопитающих. Об этом свидетельствуют результаты исследований сотрудников Токийского медицинского университета. Ученые показали, что у мышиных эмбрионов с выключенным геном Reg10 нарушается развитие плаценты, отчего эмбрион погибает через 10 дней после зачатия. Внешне плацента такого эмбриона выглядит почти нормально, однако в ней отсутствуют некоторые типы клеток, необходимые для эффективной работы органа.

1 ... 92 93 94 ... 116
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Рождение сложности. Эволюционная биология сегодня. Неожиданные открытия и новые вопросы - Александр Марков», после закрытия браузера.

Комментарии и отзывы (0) к книге "Рождение сложности. Эволюционная биология сегодня. Неожиданные открытия и новые вопросы - Александр Марков"