Читать книгу "Вопрос жизни. Энергия, эволюция и происхождение сложности - Лейн Николас"
Шрифт:
Интервал:
Закладка:
Вероятность серпентинизации на других планетах Млечного Пути
Leeuw, N. H. de, Catlow, C. R., King, H. E., Putnis, A., Muralidharan, K., Deymier, P., Stimpfl, M., and M. J. Drake Where on Earth has our water come from? // Chemical Communications 46: 8923–8925 (2010).
Petigura, E. A., Howard, A. W., and G. W. Marcy Prevalence of Earth-sized planets orbiting Sunlike stars // Proceedings National Academy Sciences USA 110: 19273–19278 (2013).
Глава 4. Появление первых клеток
Горизонтальный перенос генов и видообразование
Doolittle, W. F. Phylogenetic classification and the universal tree // Science 284: 2124–2128 (1999).
Lawton, G. Why Darwin was wrong about the tree of life // New Scientist 2692: 34–39 (2009).
Mallet, J. Why was Darwin’s view of species rejected by twentieth century biologists? // Biology and Philosophy 25: 497–527 (2010).
Martin, W. F. Early evolution without a tree of life // Biology Direct 6: 36 (2011).
Nelson-Sathi, S., et al. Origins of major archaeal clades correspond to gene acquisitions from bacteria // Nature, doi: 10.1038/nature13805 (2014).
“Единое дерево жизни”, построенное менее чем по 1 % генов
Ciccarelli, F. D., Doerks, T., Mering, C. von, Creevey, C. J., Snel, B., et al. Toward automatic reconstruction of a highly resolved tree of life // Science 311: 1283–1287 (2006).
Dagan, T., and W. Martin The tree of one percent // Genome Biology 7: 118 (2006).
Гены архей и бактерий
Charlebois, R. L., and W. F. Doolittle Computing prokaryotic gene ubiquity: Rescuing the core from extinction // Genome Research 14: 2469–2477 (2004).
Koonin, E. V. Comparative genomics, minimal gene-sets and the last universal common ancestor // Nature Reviews Microbiology 1: 127–136 (2003).
Sousa, F. L., Thiergart, T., Landan, G., Nelson-Sathi, S., Pereira, I. A. C., Allen, J. F., Lane, N., and W. F. Martin Early bioenergetic evolution // Phil. Trans. R. Soc. B 368: 20130088 (2013).
Последний всеобщий предок
Dagan, T., and W. Martin Ancestral genome sizes specify the minimum rate of lateral gene transfer during prokaryote evolution // Proceedings National Academy Sciences USA 104: 870–875 (2007).
Edgell, D. R., and W. F. Doolittle Archaea and the origin(s) of DNA replication proteins // Cell 89: 995–998 (1997).
Koga, Y., Kyuragi, T., Nishihara, M., and N. Sone Did archaeal and bacterial cells arise independently from noncellular precursors? A hypothesis stating that the advent of membrane phospholipid with enantiomeric glycerophosphate backbones caused the separation of the two lines of descent // Journal of Molecular Evolution 46: 54–63 (1998).
Leipe, D. D., Aravind, L., and E. V. Koonin Did DNA replication evolve twice independently? // Nucleic Acids Research 27: 3389–3401 (1999).
Martin, W., and M. J. Russell On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells // Phil. Trans. R. Soc. B 358: 59–83 (2003).
Проблема мембранных липидов
Lane, N., and W. Martin The origin of membrane bioenergetics // Cell 151: 1406–1416 (2012).
Lombard, J., López-García, P., and D. Moreira The early evolution of lipid membranes and the three domains of life // Nature Reviews in Microbiology 10: 507–515 (2012).
Shimada, H., and A. Yamagishi Stability of heterochiral hybrid membrane made of bacterial sn-G3P lipids and archaeal sn-G1P lipids // Biochemistry 50: 4114–4120 (2011).
Valentine, D. Adaptations to energy stress dictate the ecology and evolution of the Archaea // Nature Reviews Microbiology 5: 1070–1077 (2007).
Путь Вуда – Льюнгдаля
Fuchs, G. Alternative pathways of carbon dioxide fixation: Insights into the early evolution of life? // Annual Review Microbiology 65: 631–658 (2011).
Ljungdahl, L. G. A life with acetogens, thermophiles, and cellulolytic anaerobes // Annual Review Microbiology 63: 1–25 (2009).
Maden, B. E. H. No soup for starters? Autotrophy and the origins of metabolism // Trends in Biochemical Sciences 20: 337–341 (1995).
Ragsdale, S. W., and E. Pierce Acetogenesis and the Wood – Ljungdahl pathway of CO2 fixation // Biochimica Biophysica Acta 1784: 1873–1898 (2008).
Геологические основы пути Вуда – Льюнгдаля
Nitschke, W., McGlynn, S. E., Milner-White, J., and M. J. Russell On the antiquity of metalloenzymes and their substrates in bioenergetics // Biochimica Biophysica Acta 1827: 871–881 (2013).
Russell, M. J., and W. Martin The rocky roots of the acetyl-CoA pathway // Trends in Biochemical Sciences 29: 358–363 (2004).
Абиотический синтез ацетилтиоэфиров и ацетилфосфата
Duve, C. de Did God make RNA? // Nature 336: 209–210 (1988).
Heinen, W., and A. M. Lauwers Sulfur compounds resulting from the interaction of iron sulfide, hydrogen sulfide and carbon dioxide in an anaerobic aqueous environment // Origins Life Evolution Biosphere 26: 131–150 (1996).
Huber, C., and G. Wäctershäuser Activated acetic acid by carbon fixation on (Fe,Ni)S under primordial conditions // Science 276: 245–247 (1997).
Martin, W., and M. J. Russell On the origin of biochemistry at an alkaline hydrothermal vent // Phil. Trans. R. Soc. B 367: 1887–1925 (2007).
Возможное происхождение генетического кода
Copley, S. D., Smith, E., and H. J. Morowitz A mechanism for the association of amino acids with their codons and the origin of the genetic code // Proceedings National Academy Sciences USA 102: 4442–4447 (2005).
Lane, N. Life Ascending: The Ten Great Inventions of Evolution. W. W. Norton/Profile, London (2009).
Taylor, F. J., and D. Coates The code within the codons // Biosystems 22: 177–187 (1989).
Сходство между условиями щелочных гидротермальных источников и путем Вуда – Льюнгдаля
Внимание!
Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Вопрос жизни. Энергия, эволюция и происхождение сложности - Лейн Николас», после закрытия браузера.