Читать книгу "Мусорная ДНК. Путешествие в темную материю генома - Несса Кэри"
Шрифт:
Интервал:
Закладка:
В чем же состоит молекулярное объяснение нашей изощренности как организмов? Ученые уже довольно давно более или менее сошлись во мнении, что объяснение таится где-то в наших генах. Ожидалось, что у человека попросту больше генов, кодирующих белки, нежели у более простых организмов — скажем, у червей, мух или кроликов.
К тому времени, когда опубликовали черновую расшифровку человеческого генома, генетики уже завершили секвенирование для целого ряда других организмов. Разумеется, поначалу они сосредоточились на более простых (и меньших по размеру) геномах по сравнению с человеческим. К 2001 году удалось секвенировать геномы сотен вирусов, десятков бактерий, двух простых видов животных, одного гриба и одного растения. Ученые использовали эти данные, чтобы оценить, сколько генов содержится в человеческом геноме. (Для этой оценки применялся и целый ряд других экспериментальных методик и подходов.) Оценки варьировались от «30 тысяч» до «120 тысяч» — среди специалистов царила известная неуверенность касательно данного вопроса. В прессе часто циркулировала цифра «100 тысяч», хотя и эта оценка изначально не считалась определенной. Похоже, большинство исследователей считали разумной величину примерно в 40 тысяч.
Но когда в феврале 2001 года обнародовали черновую расшифровку генома человека, ученые не смогли найти в ней и 40 тысяч генов, кодирующих белки, не говоря уж о 100 тысячах. Исследователи из Celera Genomics идентифицировали 26 тысяч генов, кодирующих белки, и с меньшей уверенностью выявили еще 12 тысяч. Участники международного консорциума идентифицировали 22 тысячи таких генов и предсказали, что в общей сложности их окажется 31 тысяча. В годы после публикации черновика это количество неуклонно сокращалось. Сейчас считается общепринятым фактом, что человеческий геном содержит около 20 тысяч генов, кодирующих белки11.
Может показаться странным, что ученые не пришли к единому мнению насчет количества генов, едва была опубликована черновая расшифровка генома. Причина — в том, что для идентификации генов необходимо анализировать данные о генетической последовательности, а это не так просто, как кажется. Гены не помечены разными цветами, они не используют особые наборы генетических букв, отличающие их от прочих частей генома. Чтобы выявить ген, кодирующий белок, нужно проанализировать определенные характеристики и объекты: скажем, те последовательности, которые могут кодировать цепочку аминокислот.
Как мы уже видели в главе 2, гены, кодирующие белки, не создаются из одной непрерывной ДНК-последовательности. Они конструируются модульным образом, причем области, кодирующие белки, перемежаются отрезками генетического мусора. Человеческие гены обычно гораздо длиннее генов фруктовых мушек-дрозофил или микроскопического червя C.elegans (эти существа являются весьма распространенными модельными системами в генетических исследованиях). Однако белки человека обычно примерно того же размера, что и аналогичные белки дрозофилы или червя. В человеческих генах велика именно мусорная составляющая, а не те фрагменты, которые кодируют белки. У людей эти мусорные участки зачастую вдесятеро длиннее, чем у более простых организмов. Некоторые из таких участков могут достигать длины в несколько десятков тысяч пар нуклеотидных оснований.
Отсюда возникает серьезная проблема: как отличить сигнал от шума, анализируя гены в генетических последовательностях человека? Даже в пределах одного-единственного гена лишь небольшой участок отвечает за кодирование белка. Этот участок окружен гигантской областью генетического мусора.
Вернемся к исходной проблеме. Почему человек является столь сложно устроенным организмом, если наши гены, кодирующие белки, так похожи на аналогичные гены мух и червей? Отчасти это объясняется сплайсингом — процессом, о котором мы упоминали в главе 2. Человеческие клетки способны создавать большее количество вариантов белков по сравнению с более простыми организмами. Более 60% генов человека умеют создавать такие сплайсинговые вариации. Снова обратимся к рис. 2.5. Клетка человека способна производить белки, обозначенные на этой схеме как БЛЕДНОСТЬ, БЕДНОСТЬ, ЛЕСТЬ, ЕНОТ, ЛЕС, ЛЕНОСТЬ. В различных тканях она вырабатывает эти белки в разных соотношениях. К примеру, белки, которые мы обозначаем как БЛЕДНОСТЬ, ДНО и ЛЕСТЬ, могут в больших количествах синтезироваться в мозгу, тогда как почки могут экспрессировать лишь БЛЕДНОСТЬ и ЛЕНОСТЬ, при этом вырабатывать в 20 раз больше белка ЛЕНОСТЬ, чем белка БЛЕДНОСТЬ. В более простых организмах клетки будут производить лишь БЛЕДНОСТЬ да БЕДНОСТЬ, причем в более или менее фиксированных соотношениях в различных клетках. Сплайсинговая гибкость позволяет человеческим клеткам вырабатывать гораздо более разнообразные белки по сравнению с более простыми организмами.
Ученые, анализировавшие геном человека, предполагали, что могут существовать специфичные для человека гены, кодирующие белки: эти-то гены, мол, и отвечают за сложность нашего устройства, так возвышающую нас над прочей живностью. В человеческом геноме насчитывается около 1300 семейств генов. Почти все эти семейства встречаются во всех ветвях древа жизни, от самых простых организмов до самых сложных. Существует набор из приблизительно ста генных семейств, специфичных для животных, имеющих хребет, но даже они возникли уже на ранних этапах эволюции позвоночных. Эти характерные для позвоночных семейства генов, как правило, участвуют в комплексных процессах: скажем, в работе элементов иммунной системы, запоминающих инфекцию; в изощренных мозговых связях; в тромбообразовании; в передаче сигналов между клетками.
Часть нашего генома, кодирующая белки, словно бы построена из конструктора «Лего» с несметным количеством деталей. Большинство таких наборов (особенно наборы для новичков, эти громадные коробки) содержат ряд строительных блоков, которые являются вариациями на немногочисленные темы: треугольники и квадратики, несколько наклонных элементов, а может быть, еще и несколько арок в придачу. Ну да, они бывают разного цвета, у них разные пропорции и разная толщина, но в целом они похожи. Между тем из них можно соорудить почти все основные структуры, от лесенки из двух блоков до целого жилого комплекса. Лишь когда вам нужно построить что-то совсем-совсем особенное, вроде Звезды Смерти, требуются какие-то весьма необычные элементы, выходящие за рамки стандартов обычного конструктора «Лего».
На протяжении эволюции геномы развивались, но строились из стандартного набора «деталей конструктора». Лишь иногда, крайне редко, они создавали что-то совершенно новое. Так что мы не можем объяснить сложность устройства человека, заявляя, что у нас много необычных генов, кодирующих белки и специфичных лишь для человека. Таких генов у нас, откровенно говоря, немного.
Картина еще больше запутывается, если сравнить размеры человеческого генома с размерами генома других организмов. Посмотрите на рис. 3.1. Легко видеть, что у человека геном гораздо больше, чем у C.elegans, и неизмеримо больше, чем у дрожжей. Однако по относительному количеству генов, кодирующих белки, разница не столь уж велика.
Внимание!
Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Мусорная ДНК. Путешествие в темную материю генома - Несса Кэри», после закрытия браузера.