Онлайн-Книжки » Книги » 💉 Медицина » Скрытые возможности нашего мозга - Михаил Вейсман

Читать книгу "Скрытые возможности нашего мозга - Михаил Вейсман"

234
0

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 8 9 10 ... 28
Перейти на страницу:

То есть, пока речь о грядущей войне человекообразных машин не идет, нанотехнологии широко внедряют в медицине. Здесь они могут принести (и приносят) больше пользы. На них построено множество современных контрастных растворов для радиологических исследований. Допустим, контрастом для ПЭТ (позитронно-эмиссионной томографии) служат обычные биологически активные вещества – глюкоза или белки. Только к молекуле этих веществ присоединяется радиоактивный изотоп. Смысл процедуры понятен: на ПЭТ чаще всего ищут злокачественные опухоли и их метастазы. Клетки рака покушать любят, поэтому почти все, что им попадается полезного в крови, они поглощают без разбору. Если то, что они «съели» на сей раз, является источником радиоактивного излучения, томограф непременно зафиксирует наиболее активно излучающие участки тканей. Опухоль будет найдена. А для того, чтобы изотоп мог попасть внутрь злокачественной клетки, и необходима глюкоза. Напомним, это вещество служит универсальным источником энергии для всех клеток и тканей тела. Естественно, они с охотой тут же и распределят введенную в кровь порцию!

Без нанотехнологий существование подобных препаратов было бы невозможно. Приходилось бы просто облучать ампулу с раствором, рискуя удвоить дозу радиации для пациента или получить вещество, уже на глюкозу совсем не похожее. Радиация-то разрушает атомные связи в молекулах! Едва ли просто облученный препарат поглощался бы клетками так же быстро и легко, как сконструированный в нанолаборатории. Вероятность есть, но не столь уж большая – трансжиры вот тоже вроде бы усваиваются… Но не совсем так, как обычные. Однако проблемы онкогенности трансжиров – это всего лишь вопрос отсроченных во времени последствий. А ведь в случае с ПЭТ речь идет о точности диагностики, и такие ошибки в ней недопустимы!

Применительно к проницаемости гематоэнцефалического барьера, ученые испытывают наибольшие затруднения с размером молекул. Разные барьеры организма рассчитаны на пропуск разной же величины элементов. Так вот, гематоэнцефалический барьер из них – самое мелкое «сито». В основном защитная система головного мозга фильтрует вещества по признаку величины их частиц – и в ее тактике есть смысл. В то же время, если бы дело ограничивалось лишь размерами, наука получила бы искомое уже, наверное, году к 2000…

Прежде всего, распределение любых веществ в организме закономерно – то есть подчиняется определенным законам. Жирорастворимые компоненты первым делом, разумеется, будут накапливаться в жировых тканях. Водорастворимые – в крови и цитоплазме клеток. С этой точки зрения есть вещества более и менее универсальные, и их можно расставить по позициям этой шкалы даже, пожалуй, без особо сложных вычислений. Но по окончании этого разбора тотчас пора переходить к следующему – молекулы каких-то веществ распадаются во внутренней среде организма чаще, а какие-то – реже.

Распадаются – это не то же самое, что усваиваются. Речь идет о том, что определенная часть молекул абсолютно любого вещества утрачивает свою структуру сразу после попадания в организм. То есть до начала процесса усвоения. Причин досрочного разрушения молекул на ионы много. Допустим, кровь обладает собственным электрическим зарядом. К тому же это – среда химически активная. Да и сама молекула может быть просто неудачно «склеена». Такое явление наблюдается повсеместно, а не только в организме. Выше уже был описан случай с грозой. Так вот, кто может сказать точно, почему часть валентных связей в молекуле кислорода рвется под действием статических зарядов и образует свободные ионы? Ведь большинство молекул кислорода переносит возмущение полей атмосферы абсолютно спокойно и захватывает еще потом высвобожденные ионы, образуя озон!

Подобные элементы преждевременного распада не пропускает ни один из барьеров организма. Поэтому устойчивость полученной лабораторным путем конструкции тоже нужно непременно учитывать. И потом, это мы перечислили только свойства, которыми может обладать или не обладать сам препарат. А ведь существуют еще индивидуальные особенности строения организма – и они способны доставить хлопот ничуть не меньше!

В тканях головного мозга удельный вес жира достаточно высок – особенно по сравнению с мышцами и костями скелета. Впрочем, не секрет, что и костный мозг содержит немало липидов. Жир вообще требуется организму для строительства многих эластичных и проницаемых оболочек – мембран клеток, кожных покровов, волос, ногтей… Так что представление о липидах у нашего организма далеко не исчерпывается понятием одного целлюлита. Однако бывает так, что общее количество жировых тканей в чьем-то теле сильно уменьшено. Не обязательно в этом виновата неоправданная диета – нередко такое случается из-за нарушений жирового обмена. Скажем, подобное способен спровоцировать сахарный диабет. Или существует заболевание, которое сопровождается демиелинизацией аксонов белого вещества – в то время как миелиновая оболочка аксонов образована с участием жироподобного холестерина. Изменится ли эффективность воздействия на такой мозг препарата, рассчитанного на накопление в липидном слое? Разумеется!

Иммунитет человека организован еще сложнее и тоньше, чем гематоэнцефалический барьер. Если последний способен менять проницаемость стенок, то первый умеет нечто большее – намечать сам себе цели для нападения и разбивать «противника» наголову. Причем иммунитет расставляет приоритеты (и делит все элементы организма на «свои» и «чужие») на основе сугубо индивидуального, не всегда просчитываемого опыта. Как уже было сказано, этот механизм не имеет «власти» в полости черепа именно из-за излишней бескомпромиссности его методов борьбы. Самое же главное для нас здесь то, что есть у иммунитета одно малоприятное свойство: большинство модифицированных веществ, сфера применения которых все увеличивается, провоцируют-таки его реакцию. Только реакцию особую – аутоиммунную. Ее «особость» заключается в том, что иммунитет нападает не на само чужеродное вещество, а на клетки тела – причем не всегда даже те, на которые оно воздействует.

И двойная проблема здесь заключается в том, что иммунная система не относит нейроны ни головного, ни спинного мозга к числу «своих». Они находятся вне зоны ее досягаемости – так каким же образом она могла бы «познакомиться» с ними заранее? Вот именно, никаким. Значит, они для нее – такие же «пришельцы», как и вирусы. А из этого следует, что вещества, специально разработанные для целенаправленного воздействия на клетки мозга, имеют все шансы до барьера просто не «доплыть». Для этого им будет достаточно оказаться уж слишком не схожими ни с чем, знакомым иммунитету пациента по прежнему опыту. По крайней мере, при том способе ввода, о котором сейчас речь, – при введении в кровь, а не прямо в полость черепа.

Впрочем, целесообразность разработки таких препаратов ставят под сомнение сами ученые. Ведь множество веществ организма проникает сквозь гематоэнцефалический барьер ежедневно, беспрепятственно и помногу. Логично было бы попытаться сперва сделать «посыльными» для действующего вещества именно их. Собственно, по этому пути и пошел один из первых исследователей, которому удалось сконструировать молекулу, способную успешно пройти гематоэнцефалический барьер.

Основатель американской биотехнологической компании ArmaGen Technologies У. Пардридж занимается изучением гематоэнцефалического барьера около 40 лет. Он обнаружил и доказал, что инсулиновые рецепторы в капиллярах, обслуживающих головной мозг, выполняют также транспортную функцию. Как уже было сказано, мозг человека мало зависит от уровня инсулина и может, в принципе, обходиться вовсе без него. Однако в нормальном режиме работы он все равно контролирует его уровень в крови, для чего ему и требуются эти рецепторы. Инсулин, который вырабатывается поджелудочной железой (островками особых клеток в ее тканях), служит катализатором усвоения глюкозы клетками. Степень важности этого гормона – незаменимый. Потому контроль над его производством непременно входит в число задач головного мозга. А вот тот факт, что рецепторы также захватывают его из кровотока и отправляют в ткани нашего «мыслительного центра», долгое время оставался неизвестным. Просто никто не предполагал, что мозг может и использовать инсулин, хотя обычно ему достаточно усилий одной ретикулярной формации.

1 ... 8 9 10 ... 28
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Скрытые возможности нашего мозга - Михаил Вейсман», после закрытия браузера.

Комментарии и отзывы (0) к книге "Скрытые возможности нашего мозга - Михаил Вейсман"