Читать книгу "Революция в аналитике. Как в эпоху Big Data улучшить ваш бизнес с помощью операционной аналитики - Билл Фрэнкс"
Шрифт:
Интервал:
Закладка:
Изменив способы применения базовой инфраструктуры и технологий в окружении данных, можно обеспечить пользователям прямой доступ к данным. Он должен быть таким же свободным, как доступ к аппаратам с йогуртом. Позвольте пользователям по их усмотрению смешивать и сопоставлять данные и производить анализ. Позвольте им применять любые инструменты. Прежде чем находка будет внедрена в производство, ИТ-служба может отладить процесс так, как это описано в шестой главе, и может потребовать использовать только утвержденные инструменты. Тем не менее предоставление пользователям возможности экспериментировать с различными инструментами в ходе обнаружения данных не принесет никакого вреда и способно значительно ускорить развитие новой аналитики.
Помните о том, что три современных магазина йогуртов успешно работают в моем районе, где раньше едва выживал один классический магазин. Если бы раньше у меня спросили, хочу ли я платить за йогурт больше, то я бы ответил отказом. Но теперь, распробовав альтернативу, я с удовольствием плачу больше, потому что получаю больше ценности. Аналогичным образом, когда бизнесмены получат доступ к более открытому аналитическому окружению, они будут рады выделять больше средств на ИТ-поддержку, как только обнаружат, что получают дополнительную ценность и наслаждаются возросшей свободой действий. Небольшие изменения в методах действий и культуре могут открыть двери для гораздо более здоровых и продуктивных отношений между ИТ-службами и бизнесом.
В моей статье для блога Harvard Business Review я подчеркивал необходимость преобразования ИТ-службы наподобие современных магазинов йогуртов{89}. Она должна перевести пользователей на самообслуживание данными, а не выполнять роль посредника. Самое главное, нужно изменить способ, посредством которого пользователи получают доступ к данным и инструментам обработки данных и платят за доступ.
Переход к современной бизнес-модели вовсе не означает, что организации придется полностью отказаться от имеющихся инфраструктуры и технологий. Надо лишь по-иному использовать существующие ресурсы и дать пользователям больше свободы. Чтобы стать современным, классическому магазину йогуртов достаточно переставить оборудование. Аналогичным образом концепции аналитической «песочницы» и платформы для обнаружения данных позволяют ИТ-службе перенастроить конфигурацию окружения корпоративных данных.
Когда пользователи получают больше свободы, они могут чаще обнаруживать данные – и чаще ошибаться. Здесь всегда присутствует компромисс. Родители так же постепенно предоставляют детям все больше свободы и не мешают им принимать собственные, пусть иногда и неправильные решения. Если не позволить детям делать ошибки, то, повзрослев, они окажутся неподготовленными к жизни в реальном мире.
Однажды мне задали вопрос о примере с магазинами йогуртов: что если некий покупатель смешает йогурты с разными вкусами и на выходе получит ужасную гадость? Другими словами, что если некий пользователь скомбинирует данные таким образом, что они окажутся непригодными ни для какого анализа? Я отвечаю, что в этих случаях виноваты не магазин йогуртов и не ИТ-служба, а сами люди, которые сделали плохую смесь. Хорошо, что при этом люди распознают непригодность приготовленной смеси и не совершат эту ошибку снова. Важнее же всего следующее соображение: лишая людей возможности создавать плохие сочетания вкусов или данных, вы также лишаете их возможности находить изумительные сочетания, которые понравятся всем. Вновь созданные ароматические смеси постоянно переходят в разряд стандартных.
Суть в том, что принимать очень плохие решения можно и без использования данных или аналитики. Организацию не должно парализовать вследствие опасений, что ее сотрудники могут поступить неправильно, если дать им больше свободы в доступе к данным и их анализе (разумеется, в рамках своих навыков и опыта). Пользователи способны совершать ошибки независимо от уровня доступа к данным. Многие ИТ-службы с трудом воспринимают необходимость таких перемен. Тем не менее небольшие изменения в подходе организации к использованию данных и аналитики могут принести крупные дивиденды.
Предоставьте свободу выбора, а не создавайте ограничения
Позвольте пользователям свободно исследовать данные и экспериментировать с новой аналитикой. Не все, но многие действия будут успешными. Произведите изменения в корпоративной культуре, отказавшись от контроля над данными в пользу свободы действий, и вы увидите, как положительно отреагируют на это пользователи.
В седьмой главе мы говорили о необходимости избегать ускоренных методов при определении задач и планировании анализа. Несмотря на то что это не самые сложные виды деятельности, они требуют времени и сил, и потому можно легко поддаться искушению сократить или полностью пропустить эти два этапа. К счастью, они включены во все стандартные схемы аналитических процессов. Для того чтобы преуспеть с операционной аналитикой, организациям требуется утвердить культуру, в которой надлежащее определение проблем и планирование не только поощряются, но и предусматриваются. Если потратить вначале чуть больше времени, чтобы все правильно распланировать, то можно будет сэкономить массу времени впоследствии.
Гораздо лучше начать рассчитанный на месяц проект на день позже, чтобы более тщательно все продумать, чем потерять несколько дней или недель в процессе его реализации из-за того, что оставшийся непродуманным вопрос вызвал серьезную проблему. Чтобы не погрязнуть на месяцы в бюрократической волоките, не нужно составлять 100-страничный подробный план проекта, который потребует утверждения у 20 человек. Соберите компетентных исполнителей, чтобы они обсудили, какая и для чего понадобится аналитика и каким должен быть поэтапный план действий.
Даже когда поджимают сроки, надо найти время сесть, перевести дыхание и все спокойно обдумать. Если каждый возьмет это себе за привычку, дела быстрее пойдут на лад. Однако во многих организациях принято в периоды кризисов максимально сокращать этап планирования, чтобы как можно быстрее приступить к работе. Если каждый занят делом, это хорошо, не так ли? Не совсем. При таком подходе произвольная деятельность и видимость прогресса ставятся выше, чем достижение требуемых результатов.
В то время как текущую деятельность осуществляют в основном отдельные люди, организация может в своих пределах установить правила и породить ожидания, способствующие успеху. В этом разделе мы обсудим три конкретных способа повысить вероятность того, что организация добьется успеха во внедрении и эффективном использовании операционной аналитики.
Внимание!
Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Революция в аналитике. Как в эпоху Big Data улучшить ваш бизнес с помощью операционной аналитики - Билл Фрэнкс», после закрытия браузера.