Читать книгу "Величайшие математические задачи - Йен Стюарт"
Шрифт:
Интервал:
Закладка:
Уравнение Навье — Стокса описывает, как меняется со временем в заданных условиях распределение скоростей в жидкости. О нем часто говорят во множественном числе как об уравнениях Навье — Стокса, но дела это не меняет. Множественное число отражает классический подход: в трехмерном пространстве скорость складывается из трех компонент; в классической теории на каждую компоненту приходится по одному уравнению, а всего их получается три. С современной точки зрения существует всего одно уравнение для вектора скорости (величины, которую характеризует не только размер, но и направление), но это уравнение приложимо к каждой из трех компонент скорости. На сайте Института Клэя используется классическая терминология, но здесь я буду следовать современной практике. Я говорю об этом заранее, чтобы избежать возможной путаницы.
Уравнение датируется 1822 г., когда Навье впервые записал уравнение в частных производных для потока вязкой — липкой — жидкости. Стокс внес свой вклад в 1842 и 1843 гг. Эйлер записал уравнение в частных производных для жидкости с нулевой вязкостью — совершенно не липкой — в 1757 г. Это уравнение тоже полезно, но большинство реальных жидкостей, включая воду и воздух, являются вязкими, поэтому Навье и Стокс модифицировали уравнение Эйлера таким образом, чтобы учесть это свойство. Они вывели примерно одинаковые уравнения независимо друг от друга, поэтому оно названо в честь их обоих. Навье сделал в процессе вывода несколько математических ошибок, но получил верный ответ, а у Стокса с математикой все было в порядке, и именно поэтому мы знаем, что ответ Навье верен, несмотря на ошибку. В самой общей форме уравнение применимо к сжимаемым жидкостям, таким как воздух. Однако существует и важный частный случай, при котором жидкость считается несжимаемой. Эта модель применима к таким жидкостям, как вода, которая под очень большим давлением все же сжимается, но лишь чуть-чуть.
Существует два способа составить математическое описание потока жидкости: можно либо описать маршрут движения каждой частицы жидкости со временем, либо описать скорость потока в каждой точке пространства и в каждый момент времени. Эти два описания связаны между собой: имея одно, можно (не без труда) вывести и второе. И Эйлер, и Навье, и Стокс использовали второй подход, потому что уравнение в этом случае получается гораздо более удобным и решаемым. Так что в их уравнениях фигурирует поле скоростей жидкости. В каждый конкретный момент времени поле скоростей точно определяет скорость и направление каждой частицы жидкости. По ходу времени это описание может меняться, именно поэтому в уравнении присутствуют скорости изменения параметров как в пространстве, так и во времени.
Уравнение Навье — Стокса имеет отличную физическую родословную. Оно основано на законах Ньютона, примененных к каждой крохотной частице (небольшой области) жидкости, и выражает в данном контексте закон сохранения импульса. Каждая частица движется, потому что на нее действуют силы, а закон движения Ньютона гласит, что ускорение частицы пропорционально действующей на нее силе. Основными силами являются трение, вызванное вязкостью, и давление. Присутствуют также силы, порожденные ускорением частицы. В соответствии с классической традицией уравнение описывает жидкость как бесконечно делимую массу. В частности, оно игнорирует дискретность атомной структуры жидкости в микромасштабе.
Уравнения сами по себе не имеют особой ценности: их надо еще научиться решать. Для уравнения Навье — Стокса решение означает расчет поля скоростей: скорости и направлении движения жидкости в каждой точке пространства в каждый момент времени. Уравнение налагает ограничения на эти величины, но не определяет их непосредственно. Вместо этого мы должны при помощи этого уравнения соотносить будущие скорости с текущими. Уравнения в частных производных, такие как уравнение Навье — Стокса, имеют много разных решений; точнее говоря, бесконечно много. И это неудивительно: жидкости способны течь очень по-разному: ток жидкости по капоту автомобиля отличается от тока жидкости по крылу самолета в полете. Существует два способа выбрать конкретный поток из бесконечного множества возможностей: используя либо начальные, либо граничные условия.
Начальные условия определяют поле скорости в какой-то конкретный момент времени; обычно его считают нулевым. Физически идея состоит в том, что если вам известно поле скорости в этот момент, то уравнение Навье — Стокса однозначно определяет это поле через очень короткий промежуток времени. Если для начала вы дадите жидкости толчок, она будет двигаться до тех пор, пока это не будет противоречить законам физики. Граничные условия более полезны в большинстве приложений, потому что начальные условия трудно обеспечить в реальной жидкости, да и вообще, они не слишком подходят для применения, скажем, в автомобильном дизайне. Там главное — форма машины. Вязкие жидкости прилипают к поверхностям. Математически это моделируется определением скорости на этих поверхностях, образующих границу занятой жидкостью области, а именно в ней уравнение действительно. К примеру, мы могли бы потребовать, чтобы скорость на границе была нулевой или наложить какое-то другое условие, которое наилучшим образом моделирует реальность.
Но даже в тех случаях, когда определены начальные или граничные условия, мы очень редко можем написать в явном виде формулу для поля скорости, потому что уравнение Навье — Стокса нелинейно. Сумма двух его решений, как правило, не является решением. Это, кстати, одна из причин, по которым задача трех тел из главы 8 настолько сложна, хотя это не единственная причина, ведь задача двух тел тоже нелинейна, но тем не менее решается в явном виде.
Для практических целей мы всегда можем решить уравнение Навье — Стокса на компьютере, представив поле скорости в виде набора чисел. Этот набор чисел можно очень наглядно представить в графическом виде и использовать для расчета величин, которые в первую очередь интересуют инженеров: к примеру, напряжений, возникающих в крыле самолета. Поскольку компьютеры не умеют работать с бесконечным количеством чисел и не могут проводить вычисления с бесконечной точностью, нам приходится заменять реальный поток его дискретной аппроксимацией, т. е. набором чисел, представляющих поток в конечном числе точек и моментов времени. При этом очень важно, чтобы аппроксимация была достаточно качественной.
Обычный подход состоит в том, чтобы разделить пространство на большое число маленьких областей, образовав таким образом расчетную сетку. Скорость при этом вычисляется только в узлах этой сетки. Сама сетка может состоять из обычных квадратов (или кубов, если речь идет о трех измерениях), как шахматная доска, но для расчета автомобилей или самолетов она должна быть более сложной и иметь вблизи границы ячейки помельче, позволяющие уловить более тонкие детали происходящего. Сетка может быть динамической и менять форму с ходом времени. Обычно считается, что время идет дискретно, небольшими шагами, иногда одинаковыми, а иногда меняющими длительность в соответствии с ходом расчетов.
Основой большинства численных методов служит то, как «скорость изменения» определяется в дифференциальном исчислении. Предположим, некий объект сдвигается из одной точки в другую за очень короткий промежуток времени. Тогда скорость изменения положения — собственно скорость — есть изменение положения, деленное на время, которое на это потребовалось. При этом возникает небольшая ошибка, которая постепенно исчезает, по мере того как укорачивается промежуток времени. Поэтому мы можем аппроксимировать скорость изменения, входящую в уравнение Навье — Стокса, этим отношением изменения пространственного положения к изменению времени. В результате уравнение говорит нам, как провести известное начальное состояние — заданный набор скоростей — на один временной шаг вперед, в будущее. Примерно так же можно аппроксимировать решения, когда ситуация определяется граничными условиями. Существует также много хитрых способов добиться того же результата с большей точностью.
Внимание!
Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Величайшие математические задачи - Йен Стюарт», после закрытия браузера.