Читать книгу "Теория относительности Эйнштейна за 1 час - Наталья Сердцева"
Шрифт:
Интервал:
Закладка:
Устроиться ассистентом в другой университет он тоже не мог: потенциальные работодатели обращались за рекомендациями к Веберу, после чего отказывали Эйнштейну в месте. Долгое время выпускник не мог найти работу, перебивался случайными заработки и практически голодал. Это был, пожалуй, самый тяжелый период в его жизни. Он признавался, что уже подумывал о том, чтобы пойти работать страховым агентом, когда его приятель Марсель Гроссман нашел ему работу в патентном бюро Берна.
Работа в патентном бюро, доставшая Эйнштейну после многомесячных поисков, стала для него настоящим спасением. Если бы не это неожиданное предложение, ему пришлось бы оставить науку и заниматься чем-то другим, просто чтобы заработать на пропитание. Позже ученый писал, что без этой работы «потерял бы всю силу духа». А так он оказался в привычной и любимой обстановке: среди динамо-машин, коммутаторов, электрических приборов и других изобретений. В его обязанности входила оценка представляемых проектов, он должен был определить, будет ли очередной механизм работать и принесет ли пользу науке и промышленности. Его профилем были изобретения, связанные с электричеством, в этой области он разбирался прекрасно.
Новая служба дала ученому не только средства к существованию и благоприятную атмосферу, но и время для раздумий и трудов. Именно во время работы в патентом бюро Альберт Эйнштейн совершил те потрясающие открытия, которые были опубликованы в 1905 году, в честь этого названном «годом чудес». Статьи ученого были посвящены самым животрепещущим для физики того времени темам: природе света, соотношению массы и энергии, броуновскому движению и, конечно, самая знаменитая статья – специальной теории относительности.
Менее знаменитая, но тоже очень важная для физики статья называлась «Зависит ли инерция тела от содержания в нем энергии?» В ней ученый рассматривал те положения, которые впоследствии привели его к формуле Е = тс2.
Саму формулу он тогда еще не вывел, но подробно описал теоретические выкладки. Суть их заключалась в следующем: чем быстрее движется какой-либо объект, тем сильнее увеличивается его масса и тем больше нужно энергии, чтобы приводить его в движение. В одном из писем он рассуждал по этому поводу так: «Из принципа относительности следует, что масса должна быть непосредственной мерой энергии, содержащейся в теле; свет переносит массу. У радия при его распаде должно происходить заметное убывание массы. Это соображение радует и подкупает. Однако не смеется ли по этому поводу и не водит ли меня за нос Господь – этого я не знаю». Тогда у него еще были сомнения в своей правоте, они рассеются позже, после рождения общей теории относительности.
Для того чтобы вывести самую известную формулу всех времен, Эйнштейн смоделировал ситуацию, в которой присутствует тело, распространяющее электромагнитное излучение, и две системы отсчета для его описания. Первая система отсчета покоится, вторая движется относительно тела с постоянной скоростью. Совершив математические расчеты, Эйнштейн обнаружил: испуская излучение, тело теряет не только энергию, но и массу. Таким образом, эти две величины взаимосвязаны, масса переходит непосредственно в энергию. На этой стадии ученый делает вывод, что масса тела – это мера энергии, которая в нем содержится. Если меняется количество энергии, то и масса меняется на соответствующую величину. Это и выражено формулой Е = тс2.
Нужно отметить, что в момент выхода в свет революционных работ, совершивших переворот в физике, Эйнштейн не только не был признанным ученым, к нему вообще относились настороженно в научных кругах. Хотя у него были друзья и единомышленники, знавшие о темах его работы, большая часть научного сообщества не ожидала от него мало-мальски толковых трудов. Он был на периферии науки и вот оказался в самом ее центре, там, где кипели страсти и дискуссии.
О принципе относительности говорил еще известный физик и астроном Галилео Галилей в XVI веке. В трактате «Диалог о двух главнейших системах мира» он предложил читателям такой эксперимент: «Уединитесь с кем-либо из друзей в просторном помещении под палубой какого-нибудь корабля, запаситесь мухами, бабочками и другими подобными мелкими летающими насекомыми; пусть будет у вас там также большой сосуд с водой и плавающими в нем маленькими рыбками; подвесьте далее наверху ведерко, из которого вода будет капать капля за каплей в другой сосуд – с узким горлышком, подставленный внизу.
Пока корабль стоит неподвижно, наблюдайте прилежно, как мелкие летающие животные с одной и той же скоростью движутся во все стороны помещения; рыбы, как вы увидите, будут плавать безразлично во всех направлениях; все падающие капли попадут в подставленный сосуд, и вам, бросая другу какой-нибудь предмет, не придется бросать его с большей силой в одну сторону, чем в другую, если расстояния будут одни и те же; и если вы будете прыгать сразу двумя ногами, то сделаете прыжок на одинаковое расстояние в любом направлении.
Прилежно наблюдайте все это, хотя у нас не возникает никакого сомнения в том, что, пока корабль стоит неподвижно, все должно происходить именно так. Заставьте теперь корабль двигаться с любой скоростью, и тогда (если только движение будет равномерным и без качки в ту и другую сторону) во всех названных явлениях вы не обнаружите ни малейшего изменения и ни по одному из них не сможете установить, движется ли корабль или стоит неподвижно… И причина согласованности всех этих явлений в том, что движение корабля обще всем находящимся в нем предметам, также как и воздуху; поэтому-то я и сказал, что вы должны находиться под палубой…»
В сегодняшней физике принцип относительности сформулирован так: во всех инерциальных системах отсчета (находящихся в неподвижности или движущихся равномерно и прямолинейно) механические явления происходят одинаково, по одним и тем же законам.
Чтобы понять важность такого фактора, как система отсчета, можно рассмотреть эксперимент Галилея с точки зрения геометрии. Представим, что на причале стоит наблюдатель, фиксирующий движение корабля. Ему будет соответствовать первая, неподвижная система отсчета. Второй наблюдатель и вторая система отсчета – движущаяся – находятся в трюме.
Если корабль движется вдоль причала с постоянной скоростью, то положение в пространстве второго наблюдателя изменяется, но он этого не знает. Он определяет свои координаты как находящиеся на нулевой отметке оси координат. Первый наблюдатель видит, как меняется положение второго, и может определить его координаты на своей оси. Они будут отличаться от нулевой отметки на то расстояние, которое преодолел второй наблюдатель. Для того чтобы получить возможность связать между собой первую и вторую систему отсчета, были созданы преобразования Галилея, представляющие собой систему несложных уравнений. Они позволяют перевести координаты из одной системы отсчета в другую. В нашем случае первый наблюдатель, чтобы определить местоположение второго, прибавляет расстояние, которое тот проделал. Второй же для определения местоположения первого должен это расстояние вычесть.
Внимание!
Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Теория относительности Эйнштейна за 1 час - Наталья Сердцева», после закрытия браузера.