Онлайн-Книжки » Книги » 👨‍👩‍👧‍👦 Домашняя » Хаос. Создание новой науки - Джеймс Глик

Читать книгу "Хаос. Создание новой науки - Джеймс Глик"

118
0

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 6 7 8 ... 98
Перейти на страницу:

Истинный успех компьютерного моделирования состоит в том, что составление прогнозов погоды из искусства превратилось в науку. По оценкам Европейского центра, мировая экономика ежегодно сберегала миллиарды долларов благодаря предсказаниям, которые статистически были лучше, чем ничего. Однако прогнозы, составленные более чем на два-три дня, оказывались крайне умозрительными, а более чем на неделю – просто бесполезными.

Причина заключалась в эффекте бабочки[31]. Стоит возникнуть незначительному и кратковременному погодному явлению – а для глобального прогноза таковыми могут считаться и грозовые штормы, и снежные бури, – как предсказание утрачивает актуальность. Погрешности и случайности множатся, каскадом накладываясь на турбулентные зоны атмосферы, начиная от пылевых вихрей и шквалов и заканчивая воздушными токами в масштабах целого материка, отслеживать которые удается лишь из космоса.

Современное моделирование погоды работает с сетками точек, отстоящих друг от друга на шестьдесят миль. Тем не менее о некоторых начальных данных приходится лишь догадываться, поскольку наземные станции и спутники не вездесущи. Предположим, что поверхность земного шара усеяна датчиками, удаленными друг от друга лишь на фут, и они контролируют атмосферу по всей высоте[32]. Допустим, каждый датчик передает исключительно точную информацию о температуре, давлении, влажности и любой другой нужной метеорологу величине. Точно в полдень компьютер огромной мощности считывает все данные и вычисляет, что случится в каждой из точек в 12:01, в 12:02, в 12:03 и так далее.

И все же компьютер не сможет предсказать, солнечная или дождливая погода ожидается в Принстоне через месяц. В полдень небольшие отклонения температуры от среднего значения в пространстве между датчиками будут недоступны компьютеру. К 12:01 эти отклонения повлекут за собой небольшие погрешности, которые со временем станут нарастать и выльются в огромные ошибки.

Но даже опытные метеорологи не догадывались об этом. Одним из близких друзей Лоренца был Роберт Уайт, исследователь-метеоролог из Массачусетского технологического института. Когда Лоренц рассказал Уайту об эффекте бабочки и о том, какое значение он может иметь для долгосрочного прогнозирования атмосферных явлений, Уайт ответил словами Неймана:

«Дело не в предсказании, а в управлении»[33]. Его мысль заключалась в том, что небольшие изменения под контролем человека могут вызвать желаемые крупномасштабные перемены.

Но Лоренц смотрел на это по-другому. Да, мы можем изменить погоду, мы можем заставить атмосферу вести себя иначе, не так, как она вела бы себя без нашего вмешательства. Но мы никогда не узнаем, что происходило бы, если бы мы этого не сделали. Это все равно что заново тасовать уже хорошо перетасованную колоду карт. Нам ясно, что это изменит ситуацию, но неизвестно – к лучшему или к худшему.


Открытие Лоренца было случайным – звено в цепи неожиданных прозрений, восходящей еще к Архимеду с его ванной. Но Лоренц не принадлежал к числу тех, кто торопится кричать: «Эврика!» Руководимый инстинктивной прозорливостью, он приготовился идти дальше тем же путем и изучать последствия своего открытия, чтобы выяснить его роль в образовании потоков во всех видах жидкости.

Остановись Лоренц на эффекте бабочки, этом символе торжества случая над предопределенностью, в его распоряжении не оказалось бы ничего, кроме плохих новостей. Но Лоренц в своей модели погоды видел нечто большее, чем просто встроенную в нее хаотичность, – там наблюдалась изящная геометрическая структура, некий порядок, выдающий себя за случайность. Лоренц, будучи математиком по призванию и метеорологом по профессии, начал в конце концов вести двойную жизнь. Помимо работ по метеорологии из-под его пера выходили статьи, где несколько вступительных строк о теории атмосферных процессов растворялись в математическом тексте.

Он уделял все больше и больше внимания математике систем, не имевших устойчивого состояния; систем, которые почти повторяли сами себя, но делали это не абсолютно точно. Известно, что погода как раз и является такой апериодичной системой. Мир полон подобных систем, и не нужно далеко ходить за примерами: численность популяций животных то растет, то падает, делая это почти периодически, и аналогично, вопреки людским надеждам, вспыхивают и затухают эпидемии. И если бы погода когда-нибудь повторилась с точностью до облака и порыва ветра, тогда, вероятно, она стала бы повторяться и дальше – и проблема прогнозирования потеряла бы актуальность.

Лоренц чувствовал, что должна существовать связь между неповторяемостью атмосферных явлений и неспособностью метеорологов предсказать их – иными словами, связь между апериодичностью и непредсказуемостью[34]. Найти простые уравнения для апериодичности было делом нелегким – поначалу компьютер воспроизводил идеально повторяющиеся циклы – однако после череды небольших усложнений своей модели Лоренц все же достиг успеха. Это произошло, когда он ввел в машину уравнение, описывающее изменение количества тепла при движении с востока на запад, соответствующее реальной разнице в том, как солнце нагревает восточное побережье Северной Америки и Атлантический океан. В результате повторяющиеся циклы исчезли.

Эффект бабочки был не случайностью, но необходимостью. Допустим, небольшие возмущения так и остаются небольшими, не нарастая в системе, рассуждал ученый. Приближаясь к ранее пройденному состоянию, погода будет повторяться и в дальнейшем. Циклы станут предсказуемыми и в конце концов потеряют все свое очарование. Чтобы воспроизвести богатый спектр реальной погоды земного шара, ее чудесное многообразие, вряд ли можно желать чего-либо лучшего, чем эффект бабочки.

Как уже говорилось, данный феномен имеет и строгое научное название: «сильная зависимость от начальных условий». Эта зависимость не была абсолютной новостью, например, ее превосходно иллюстрирует детский стишок[35]:

Не было гвоздя – подкова пропала, Не было подковы – лошадь захромала, Лошадь захромала – командир убит, Конница разбита, армия бежит,

Враг вступает в город, пленных не щадя,

Оттого что в кузнице не было гвоздя[36].

1 ... 6 7 8 ... 98
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Хаос. Создание новой науки - Джеймс Глик», после закрытия браузера.

Комментарии и отзывы (0) к книге "Хаос. Создание новой науки - Джеймс Глик"