Читать книгу "Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали - Скотт Бембенек"
Шрифт:
Интервал:
Закладка:
Тем не менее Галилео было непросто даже с водяными часами – скорость объекта в свободном падении для точных измерений была слишком высока. Вместо этого Галилео создал способ замедлить свободное падение, сохраняя ключевые физические результаты, которые и позволили ему позже сделать точные измерения при помощи водных часов. План Галилео был прост и изящен: рассмотреть объект, который катится по наклонной плоскости. Теперь объект «падал» гораздо медленнее, что позволило Галилео произвести точные измерения при помощи часов. Галилео был убежден, что основные принципы физики одинаковы, катится ли объект с определенной высоты (по наклонной плоскости) или совершает свободное падение с той же самой высоты. Следовательно, он предвидел, что математические выражения для расчета времени достижения высоты – пусть и не одинаковые – будут похожи для обоих маршрутов. В конце концов, единственная разница между находящимся в состоянии свободного падения и катящимся вниз с одной и той же высоты объектами заключается в том, что последний двигается как по вертикали (высота), так и по горизонтали (длина), а первый только по вертикали, так как просто падает на землю.
Изначально Галилей предполагал, что вертикальное и горизонтальное направления движения объекта вниз по наклонной плоскости не зависят друг от друга, и их можно рассматривать отдельно. Это означало бы, что законы физики для движения в вертикальном направлении (которое интересовало его больше всего) одинаковы для свободного падения и движения по наклонной плоскости. Что же, оказывается, гипотезы Галилео были верны.
К данному моменту вас не должно удивлять, что скорость объекта, катящегося по наклоненной плоскости, увеличивается по мере снижения высоты. Максимальная скорость достигается в самой низкой точке, а время падения (время, которое требуется, чтобы скатиться к основанию наклонной плоскости) не зависит от массы, но непосредственно связано с начальной высотой, как и для (общего случая) маятника, и для свободно падающего объекта.
Так, для всех трех систем результаты одинаковы из-за того, что природа требует сохранения энергии. Кстати, мы не обсуждали подробно, что же в действительно влечет за собой это самое сохранение энергии; похоже, я немного затянул. Тем не менее для обсуждаемых систем у нас есть два фундаментальных типа отношений между высотой и скоростью:
– более низкая высота (от отправной точки) означает, что объект перемещается быстрее – это значит, что его наивысшая скорость будет достигнута в самой низкой точке;
– чем выше начальная высота, тем больше времени будет затрачено на падение, за исключением изохронного маятника, у которого время падения одинаково для каждой высоты.
Давайте посмотрим на другую версию эксперимента Галилео с маятником.
В эксперименте с «прерванным маятником» Галилео раскрыл еще больше последствий сохранения энергии. Вспомните, что маятник Галилео был просто свинцовым шаром, весящим одну-две унции, подвешенным на нити. Теперь вообразите маятник, спущенный от гвоздя, вбитого в стену, – маятник, который может свободно качаться из одной стороны в другую. От его точки покоя (где он висит вертикально) мы перемещаем маятник, скажем, вправо на некоторую начальную высоту и затем выпускаем его, не придавая ему ускорения.
Поскольку маятник качается справа налево, мы видим, что он достигает своей конечной высоты. Галилео, вероятно, делал это много раз на различных начальных высотах и каждый раз получал один и тот же результат: начальная высота всегда равняется конечной. Ну, честно говоря, конечная высота, вероятно, немного ниже из-за некоторого сопротивления воздуха, но Галилео вывел, что пренебрежение этим приведет к равным высотам, что и было ключевым в этом исследовании.
Но тогда Галилео добавил к оригинальному эксперименту поворот. Теперь вообразите те же условия, за исключением того, что на этот раз мы забиваем гвоздь в стену таким образом, что струна неизбежно столкнется с ним, поскольку маятник качается справа налево (рис. 2.4). Хотя колебание маятника изменились из-за гвоздя, мы опять понимаем, что начальная высота и конечная равны. Однако что будет, если мы поменяем положение гвоздя? Это не имеет значения. Нить просто зацепится за гвоздь, колебание изменится, и маятник достигнет своей конечной высоты, которая (как и прежде) совпадет с начальной высотой.
Рис. 2.4. Как и прежде, маятник перемещается направо, покидая точку покоя (самую низкую точку, в которой он висит вертикально), а затем поднимается на прежнюю высоту. При движении справа налево маятник цепляется за гвоздь, который вынуждает его изменить путь. Независимо от этого, маятник все равно достигает конечной высоты, которая совпадает с начальной.
Давайте рассмотрим еще одну, последнюю возможность: что если гвоздь лишает маятник возможности изменять свое колебание таким образом, чтобы он мог на самом деле достигнуть конечной высоты, которая равна начальной? В этом случае маятник просто продолжает двигаться, поскольку он оборачивается вокруг гвоздя.
Когда мы говорили о маятнике прежде, мы узнали, что, поскольку он качается вниз, удаляясь от начальной высоты, его скорость увеличивается. Другими словами, уменьшение в высоте приводит к увеличению скорости. Теперь мы видим, что, поскольку маятник продолжает движение на подъеме, его конечная высота (или максимальная высота) совпадет с начальной. Как связаны эти концепции? Оказывается, взаимодействие между высотой и скоростью четко уравновешено. Мы выяснили, что сила тяготения, действующая на объект на данной высоте, передает ему потенциальную энергию, но мы никогда не говорили о ее коллеге, имя которой кинетическая энергия. Тогда как потенциальная энергия – «сохраненная энергия», кинетическая энергия – «энергия движения», которая придает объекту его скорость.
Ранее мы обсуждали, как работа сохраняется таким образом, что уменьшение в необходимой силе приводит к увеличению расстояния, на которое она прилагается, при использовании простой машины. Тем не менее общая работа, затрачиваемая на выполнение задачи, сохраняется.
Принципы сохранения кинетической и потенциальной энергии похожи. В случае маятника это означает, что, поскольку высота уменьшается, потеря потенциальной энергии компенсируется увеличением кинетической энергии, что означает увеличение скорости. И наоборот: в то время как маятник продолжает движение на подъем, он становится все ближе и ближе к своей начальной высоте (но с другой стороны), и, соответственно, уменьшается кинетическая энергия, маятник замедляется и останавливается на мгновение на финальной высоте (равной той, с которой он начал движение), перед тем как упасть обратно вниз. Поэтому маятник двигается с самой высокой скоростью в самой низкой точке колебания, в то время как его скорость ниже всего в самом верху колебания. Этот обмен между потенциальной энергией и кинетической энергией не уникален для маятника; это относится ко всем системам (наклонной плоскости, объектам в свободном падении и другим) и прекрасно сбалансировано, когда отсутствует трение.
Внимание!
Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали - Скотт Бембенек», после закрытия браузера.