Онлайн-Книжки » Книги » 👨‍👩‍👧‍👦 Домашняя » Вопрос жизни. Энергия, эволюция и происхождение сложности - Лейн Николас

Читать книгу "Вопрос жизни. Энергия, эволюция и происхождение сложности - Лейн Николас"

197
0

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 65 66 67 ... 99
Перейти на страницу:


Чем больше различных тканей во взрослом организме, тем выше вероятность, что одна из жизненно важных тканей соберет в себе наихудшие митохондрии. Но если организм состоит из ткани лишь одного типа, это уже не проблема: нет никаких отдельных органов, нарушение работы которых подорвало бы здоровье всего организма. Для простого организма с тканями одного типа увеличение разнообразия митохондриального состава клеток – несомненное благо: при этом растет качество гамет и нет особенного вреда для организма. Поэтому мы предположили, что у первых животных, у которых (вероятно) был низкий уровень митохондриальных мутаций и небольшое число типов тканей, митохондрии наследовались от обоих родителей, а обособления зародышевых клеток не было. Но когда устройство этих древних животных чуть усложнилось и тканей у них стало больше, повышенное разнообразие митохондрий в клетках тела стало снижать приспособленность зрелого организма (из-за него неизбежно возникают дефектные ткани – как в сценарии с инфарктом). Теперь для увеличения приспособленности взрослых особей потребовалось снижать митохондриальное разнообразие, чтобы ткани при образовании получали схожий набор митохондрий, большинство которых хорошо функционирует.

Простейший способ уменьшить митохондриальное разнообразие в тканях зрелого организма – это увеличить число митохондрий в яйцеклетке. По законам статистики, если большая популяция разделится на много частей, разнообразие окажется меньше, чем если малая популяция будет попеременно удваиваться и делиться до образования такого же количества частей. В итоге увеличение размеров яйцеклетки и все большее увеличение числа митохондрий в ней становится выгодным. Согласно нашим расчетам, ген, обусловливающий увеличение размеров яйцеклетки, будет распространяться в популяции простых многоклеточных организмов как раз потому, что он уменьшает митохондриальное разнообразие клеток тканей зрелого организма, устраняя возможные вредоносные различия. С другой стороны, низкое митохондриальное разнообразие наносит ущерб гаметам, которые становятся похожими друг на друга и неразличимыми для естественного отбора. Как совместить две противоположные тенденции? Очень просто! Если одна гамета – яйцеклетка – увеличивается, а вторая гамета уменьшается, превращаясь в сперматозоид, то решаются обе эти проблемы. За счет больших размеров яйцеклетки снижается митохондриальное разнообразие тканей, в результате чего увеличивается приспособленность взрослых особей. В то же время вклад со стороны сперматозоидов в наследование митохондрий снижается, и все заканчивается однородительским наследованием, при котором потомкам передаются митохондрии лишь одной гаметы. А однородительское наследование митохондрий, как мы убедились, увеличивает разнообразие между гаметами и повышает их приспособленность. Иными словами, такие простейшие свойства, как анизогамия (когда гаметы – сперматозоид и яйцеклетка – отличаются друг от друга) и однородительское наследование служат отправными точками для развития организмов с большим числом тканей.

Все это подразумевает низкую частоту митохондриальных мутаций. Это справедливо для губок, кораллов и растений, но не “высших” животных. Что происходит, когда частота митохондриальных мутаций возрастает? Исчезает выгода от отсроченного образования зародышевых клеток. Наша модель показывает, что в таком случае мутации накапливаются очень быстро и митохондрии поздно образовавшихся зародышевых клеток просто кишат мутациями. Как выразился генетик Джеймс Кроу, самый опасный источник мутаций в популяции – это плодовитые старички. К счастью, благодаря однородительскому наследованию, старички никак не могут передать потомству свои митохондрии. Мы учли повышенную частоту мутаций и обнаружили, что ген, вызывающий раннее обособление клеток зародышевой линии, в этом случае будет распространяться в популяции: раннее отделение зародышевой линии и погружение женских гамет в спячку спасают от накопления митохондриальных мутаций. Еще должны поддерживаться адаптации, снижающие уровень мутаций в клетках зародышевой линии. На самом деле, как показал мой коллега Джон Аллен, митохондрии в зародышевой линии самок, судя по всему, неактивны: они “выключаются” уже в момент отделения первичных половых клеток во время эмбрионального развития яичников. Джон Аллен давно утверждает, что митохондрии в яйцеклетках служат генетическими “шаблонами”, которые редко мутируют по той причине, что они неактивны. Наша модель это подтверждает, если рассматривать современных животных с коротким жизненным циклом и большим количеством митохондрий, которые часто мутируют, но не их предков – животных с длительным жизненным циклом, или более обширные группы, например растения, водоросли и протисты.

А это означает, что самого по себе разнообразия митохондриального состава достаточно, чтобы объяснить появление многоклеточных организмов с анизогамией (со сперматозоидами и яйцеклетками), однородительским наследованием и наличием зародышевой линии с обособлением женских гоноцитов на ранних стадиях развития – что в совокупности является основой всех различий между женским и мужским полом. Иными словами, наследование митохондрий позволяет объяснить большинство реальных физических различий между полами. Может быть, эгоистический конфликт между клетками также сыграл свою роль, хотя этого могло и не быть: возникновение разделения клеток на соматические клетки и клетки зародышевой линии можно объяснить и без эгоистического конфликта. Очень важно, что наша модель выявила порядок событий, который отличается от того, что я предположил в самом начале. Я думал, что однородительское наследование митохондрий было предковым состоянием, затем появились клетки зародышевой линии, а возникновение сперматозоидов и яйцеклеток связано с расхождением настоящих полов. Вместо этого наша модель показала, что предковым состоянием было двуродительское наследование, затем возникла анизогамия (наличие сперматозоидов и яйцеклеток), затем появилось однородительское наследование, и, наконец, возникли клетки зародышевой линии. Но верна ли эта пересмотренная хронология? В любом случае, мы слишком мало знаем, чтобы сказать наверняка. Однако это в явном виде сформулированное предсказание, которое можно проверить, и мы надеемся это сделать. В первую очередь мы займемся губками и кораллами. У обеих групп есть сперматозоиды и яйцеклетки, но отсутствует обособление клеток зародышевой линии. Разовьется ли оно у них, если мы будем производить отбор на повышение частоты митохондриальных мутаций?

Перед тем как подойти к завершению, рассмотрим еще несколько следствий. Что может заставить возрасти частоту митохондриальных мутаций? Ускоренный оборот клеток и белков вследствие увеличения физической активности. Накопление кислорода в океанах незадолго до “кембрийского взрыва” сделало возможным появление активно перемещающихся билатерально-симметричных животных. Их возросшая физическая активность могла увеличить частоту митохондриальных мутаций (сравнительная геномика позволяет это измерить), что, в свою очередь, должно было привести у таких животных к обособлению клеток зародышевой линии. Так появилась бессмертная зародышевая линия и бренное тело, то есть появилась смерть – запланированный и предопределенный финал. Клетки зародышевой линии бессмертны в том смысле, что они продолжают делиться вечно. Они не стареют и не умирают. В каждом поколении на ранних стадиях развития происходит обособление зародышевых клеток, которые дадут начало следующему поколению. Хотя отдельные гаметы могут быть повреждены, тот факт, что дети рождаются молодыми, означает, что зародышевые клетки сохранили свой потенциал бессмертия, как клетки губок, которые могут регенерировать из мелких кусочков. Когда специализированные зародышевые клетки обособились, все остальное тело можно использовать для других целей: оно уже не ограничено необходимостью нести бессмертные половые клетки. Мы можем наблюдать это на примере тканей, которые уже не могут регенерировать – например тканей мозга. Это одноразовая, смертная плоть. Продолжительность жизни таких тканей ограничена и зависит от того, сколько времени нужно организму для размножения. Это, в свою очередь, зависит от того, насколько быстро животное достигает половой зрелости, от скорости его развития и предполагаемой продолжительности его жизни. Здесь мы сталкиваемся с источником смерти: компромиссом между половым размножением и старением. Мы обсудим это в следующей главе.

1 ... 65 66 67 ... 99
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Вопрос жизни. Энергия, эволюция и происхождение сложности - Лейн Николас», после закрытия браузера.

Комментарии и отзывы (0) к книге "Вопрос жизни. Энергия, эволюция и происхождение сложности - Лейн Николас"