Онлайн-Книжки » Книги » 👨‍👩‍👧‍👦 Домашняя » Число Бога. Золотое сечение – формула мироздания - Марио Ливио

Читать книгу "Число Бога. Золотое сечение – формула мироздания - Марио Ливио"

276
0

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 59 60 61 ... 78
Перейти на страницу:

Предметы, обладающие таким же свойством, например, русские куклы матрешки, которые вставляются друг в дружку, называются фракталы. Слово «фрактал» (от латинского fractus, что значит «разбитый, фрагментированный») пустил в обращение Бенуа Мандельброт – знаменитый французский и американский математик, родившийся в Польше, и это центральное понятие геометрии природы и теории крайне нерегулярных систем, известных как хаотизированные.

Геометрия фракталов – блестящая попытка описать формы и предметы реального мира. Если оглядеться вокруг, станет понятно, что лишь немногие формы описываются простыми евклидовыми фигурами вроде прямых, окружностей, сфер и кубов. Есть бородатый математический анекдот о физике, который хотел разбогатеть, делая ставки на скачках, а для этого – вывести уравнение движения коня. После долгих трудов он и впрямь составил уравнение движения сферического коня в вакууме. К сожалению, настоящие скакуны отнюдь не сферические, и облака, цветная капуста и человеческие легкие – тоже. Подобным же образом реки, молнии и дренажные системы проходят не по прямой, однако напоминают ветви деревьев и кровеносную систему человека. Рассмотрим, к примеру, фантастически сложные разветвления на картине «Могила великана в снегу» немецкого художника-романтика Каспара Давида Фридриха (1774–1840) (рис. 111, хранится в Галерее новых мастеров в Дрездене).

Колоссальный мыслительный скачок, который проделал Мандельброт, когда сформулировал геометрию фракталов, состоял в основном в том, что ученый обнаружил, что все эти затейливые зигзаги – не помеха математическому описанию морфологии, а главная ее характеристика.


Рис. 111


Первым открытием Мандельброта была важность самоподобия – того факта, что многие природные формы представляют собой бесконечную последовательность мотивов, повторяющих сами себя внутри других таких же мотивов на разных масштабах. Великолепный пример проявления этого качества – раковина наутилуса (рис. 4), как, впрочем, и самая обычная цветная капуста: если отламывать от кочана соцветия, а от них – кусочки все меньше и меньше, они до какого-то предела все равно будут точным подобием целого кочана. Сфотографируйте камешек, отколовшийся от скалы, и вам, возможно, не удастся отличить снимок от фотографии целого утеса. Этим свойством обладает и непрерывная дробь, если ее напечатать (рис. 112): увеличьте еле видные циферки, и вы обнаружите всю ту же непрерывную дробь. Однако во всех этих случаях увеличение масштаба не сглаживает некоторых шероховатостей. Более того, неправильность характерна для любого масштаба.


Рис. 112


Тогда Мандельброт задался вопросом: как определить измерения предмета, обладающего подобной фрактальной структурой? В мире евклидовой геометрии у любого предмета есть измерения, которые можно выразить целыми числами. У точки число измерений – нуль, у прямой – одно, у плоских фигур вроде треугольников и пятиугольников – два, у объемных тел вроде сфер и платоновых многогранников – три. А фрактальные кривые вроде молнии, с другой стороны, так агрессивно изгибаются туда-сюда, что попадают куда-то между одним и двумя измерениями. Если след молнии относительно гладкий, можно представить себе, что число фрактальных измерений близко к единице, если же он очень извилистый, следует ожидать числа измерений, близкого к двум. Все эти размышления вылились в вопрос, сделавшийся в наши дни знаменитым: «Какова длина побережья Британии?» Мандельброт дал на это неожиданный ответ: длина береговой линии, оказывается, зависит от длины линейки, которую возьмет измеряющий. Представьте себе, что вы начинаете со спутниковой карты Британии со стороной в один фут. Измеряете длину побережья, умножаете на нужный коэффициент, исходя из заданного масштаба карты. При таком методе, разумеется, пропадут всякие мелкие извивы береговой линии, которых на карте не видно. Теперь представьте себе, что вы вооружаетесь палкой метровой длины и начинаете долгое путешествие вдоль берегов Британии, тщательно измеряя береговую линию метр за метром. Результат, несомненно, будет гораздо больше прежнего, поскольку вам удастся зафиксировать куда более мелкие извивы и повороты. Однако вы наверняка заметите, что на более мелких участках вы все равно упустите какие-то подробности. Дело в том, что чем меньше будет наша линейка, тем больше окажется результат измерений, потому что всегда оказывается, что при уменьшении масштаба выявляется подструктура. Из этого следует, что, если имеешь дело с фракталами, нуждается в пересмотре даже концепция длины как средства передачи расстояния. Контуры береговой линии при увеличении не становятся прямыми, изгибы присутствуют при любом масштабе, и общая ее длина возрастает бесконечно – по крайней мере, пока мы не дойдем до атомов.


Рис. 113


Прекрасный пример такой ситуации – линия, которую можно считать очертаниями берегов некоей воображаемой страны. Снежинка Коха – кривая, которую первым описал в 1904 году шведский математик Нильс Хельге фон Кох (1870–1924) (рис. 113). Начертим равносторонний треугольник со стороной в один дюйм. Теперь в середине каждой стороны достроим треугольники поменьше – со стороной в одну треть дюйма. В результате на этом этапе у нас получится звезда Давида. Обратите внимание, что периметр первоначального треугольника составлял три дюйма, а теперь он состоит из двенадцати сегментов по трети дюйма каждый, так что общая его длина равняется уже четырем дюймам. Теперь будем последовательно повторять эту процедуру – на каждой стороне треугольника будем достраивать новый с длиной стороны в одну треть предыдущей. Каждый раз длина периметра будет возрастать с коэффициентом 4/3, и так до бесконечности, несмотря на то что линия ограничивает замкнутое пространство конечной площади (можно доказать, что площадь стремится к 8/5 площади первоначального треугольника).

Открытие фракталов заставило задуматься, сколько же у них измерений. Фрактальное измерение – это мера «сморщенности» фрактала, то есть того, насколько быстро увеличиваются длина, площадь или объем, если измерять их на непрерывно уменьшающемся масштабе. Например, интуитивно мы чувствуем, что кривая Коха (рис. 113, внизу) занимает больше пространства, чем одномерная линия, но меньше, чем двухмерный квадрат. Но разве так бывает, чтобы у чего-то было дробное измерение? Ведь между 1 и 2 нет никаких целых чисел. Поэтому Мандельброт принял концепцию, выдвинутую в 1919 году немецким математиком Феликсом Хаусдорфом (1868–1942) – концепцию дробных измерений, которая на первый взгляд не укладывается в голове. Хотя поначалу подобная идея вызывает некоторую оторопь, оказалось, что именно дробные измерения – прекрасный инструмент, позволяющий охарактеризовать степень неправильности, или фрактальной размерности, предметов. Чтобы получить умопостижимое определение фрактального измерения или измерения самоподобия, удобно воспользоваться в качестве точек отсчета знакомыми целочисленными измерениями – 0, 1, 2 и 3. Идея в том, чтобы разобраться, сколько мелких объектов составляют крупный при любом количестве измерений. Например, если разделить одномерный отрезок пополам, то получим два сегмента (коэффициент сокращения f = 1/2). Если разделить двумерный квадрат на «подквадраты» с половинной длиной стороны (коэффициент сокращения опять же f = 1/2), то получим 4 = 22 квадрата. Если же мы возьмем длину стороны в 1/3 первоначальной (f = 1/3), квадратов станет 9 = 32. Если же мы поступим также с трехмерным кубом, то деление ребра пополам (f = 1/2) даст нам 8 = 23 кубиков, а ребро в 1/3 первоначального – 27 = 33 кубиков (рис. 114). Если изучить все эти примеры, обнаружим, что между количеством «субобъектов» n, коэффициентом сокращения длины f и измерением D есть определенная взаимосвязь. И вот какая: n = (1/f) D. (Другую форму записи этого соотношения я привожу в Приложении 7.) Если применить эту формулу к снежинке Коха, получится фрактальное измерение, равное примерно 1,2619.

1 ... 59 60 61 ... 78
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Число Бога. Золотое сечение – формула мироздания - Марио Ливио», после закрытия браузера.

Комментарии и отзывы (0) к книге "Число Бога. Золотое сечение – формула мироздания - Марио Ливио"