Онлайн-Книжки » Книги » 👨‍👩‍👧‍👦 Домашняя » Как работает вселенная. Введение в современную космологию - Сергей Парновский

Читать книгу "Как работает вселенная. Введение в современную космологию - Сергей Парновский"

405
0

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 5 6 7 ... 59
Перейти на страницу:

Таким образом, с ньютоновской точки зрения приливная сила – это просто разница ускорений свободного падения между произвольной точкой и некоторой опорной точкой, например центром Земли. С релятивистской точки зрения приливная сила – это то, что отличает гравитацию от сил инерции, вызванных, например, ускорением ракеты.

Переходя в систему свободно падающего наблюдателя, вы можете обнулить силу, действующую в одной точке, как правило, в центре масс, но в любой другой точке имеется ненулевая разность – приливная сила. В ОТО приливные силы являются проявлением кривизны пространства-времени.



Вопрос: Почему приливы, вызванные небольшой Луной, сильнее, чем приливы, вызванные огромным Солнцем?

Ответ: Формулу для приливной силы можно найти в учебниках, она утверждает, что эта сила обратно пропорциональна кубу расстояния. Тем не менее, вместо того чтобы просто использовать эту формулу, покажем, как эта зависимость от расстояния может быть получена с помощью простой аналогии.

Рассмотрим два точечных тела единичной массы – одно в центре Земли, а другое на поверхности Земли. Приливная сила во второй точке может зависеть только от трех параметров: от расстояния между двумя точками, в которых находятся тела, от расстояния до Луны, а также от угла между направлением на Луну и линией, соединяющей эти точки. Эта приливная сила, равная разности сил, действующих на две точечные массы, равна также сумме сил, действующих на второе тело и на первое тело, если вторая взята с противоположным знаком.

Воспользуемся электростатической аналогией и заменим эти тела точечными единичными зарядами, а Луну – внешним точечным зарядом, величина которого выбирается таким образом, что силы, действующие на точечные заряды, идентичны гравитационным силам, действующим на точечные массы [20]. Обратим знак центрального заряда (именно поэтому нам понадобилось переключиться на электрическое поле, так как не существует такого понятия, как отрицательная масса). Теперь на заряд в центре Земли действует сила той же величины, но в противоположном направлении. Эти два противоположных заряда образуют диполь, причем его размеры существенно меньше расстояния до Луны.

Сила, с которой точечный заряд, которым мы заменили Луну, взаимодействует с нашим электрическим диполем, равна искомой приливной силе. Согласно третьему закону Ньютона, она равна также силе, с которой диполь действует на точечный заряд в центре Луны. Поле диполя убывает обратно пропорционально кубу расстояния, поэтому поле приливных сил должно убывать по тому же закону. Возвращаясь к гравитации, мы наконец-то получаем, что приливные силы падают обратно пропорционально кубу расстояния до тела, вызывающего приливы, и пропорциональны его массе.

Теперь сделаем некоторые простые расчеты. Солнце весит 2,0×1030 кг и расположено на расстоянии 1,5×108 км. Луна весит 7,3×1022 кг и находится на расстоянии 3,8×105 км. Таким образом, Солнце в 2,7×107 раз тяжелее и в 395 раз дальше, чем Луна. Если возвести отношение расстояний в куб, мы получаем 6,2×107, что в 2,2 раза больше, чем отношение масс. Таким образом, лунные приливы в 2,2 раза сильнее солнечных приливов.

Однако, если нас интересует отношение гравитационных сил, мы должны использовать отношение квадратов расстояний, которое в 176 раз меньше, чем отношение масс, и Солнце легко выигрывает это соревнование. Если мы интересуемся вкладом в гравитационный потенциал, обратно пропорциональный расстоянию, то вклад от галактик в скоплении Девы, расположенных на расстоянии около 54 млн световых лет (св. лет) от Земли, будет существенно большим, чем вклад как Солнца, так и Луны.

1.2.8. Пространство, время и пространство-время

Что такое пространство-время? Начнем с пространства. Наше пространство трехмерно. Это означает, что мы можем двигаться вперед или назад, вправо-влево, вверх или вниз, т. е. изменить наше местоположение, описываемое тремя пространственными координатами. Каждый физический процесс происходит в этих трех координатах и во времени. В ОТО время считается четвертой координатой в дополнение к трем пространственным. Вместе они образуют четырехмерное пространство-время.

Тем не менее время имеет одно важное отличие по сравнению с пространством: мы можем сознательно выбрать, как двигаться в пространстве, но мы не можем повлиять на наше движение во времени. Мы обречены двигаться во времени из прошлого в будущее со скоростью вне нашего контроля, если только не будем двигаться со скоростью, близкой к скорости света. Если мы будем двигаться очень быстро, мы можем немного усложнить ситуацию за счет релятивистского замедления времени, но нам все равно придется двигаться вдоль оси времени по направлению к будущему. По этой причине, даже когда мы объединяем пространственные и временны́е измерения в единое пространство-время, мы не воспринимаем их как равные и по-прежнему относимся ко времени особым образом.

Чем хороша концепция пространства-времени? Когда мы рассматриваем траекторию тела в пространстве, это не дает нам ни малейшего представления о скорости, ускорении и других кинематических свойствах движения, за исключением того, что тело когда-то находилось в каждой точке его траектории. Когда мы переходим к пространству-времени, траектория тела говорит нам не только о его местонахождении, но и о том, когда и как долго тело находилось в каждой точке своего пути. Это дает нам полное описание его кинематики на протяжении рассматриваемого периода времени. Такая траектория в пространстве-времени называется мировой линией тела.

Любая мировая линия реального тела имеет одно фундаментальное ограничение: скорость этого тела, определяемая его мировой линией, не может быть больше, чем скорость света в вакууме. Согласно СТО, только безмассовые частицы могут (и должны) путешествовать со скоростью света. На сегодняшний день известны только две такие частицы: фотон и глюон, которые являются калибровочными бозонами[21] электромагнитных и сильных сил соответственно. Из них только фотоны наблюдаются непосредственно, поскольку глюоны заключены внутри адронов[22] и не могут существовать отдельно. Некоторые теоретики предполагают, что возможно существование особого класса частиц, называемых тахионами, которые всегда движутся быстрее скорости света, однако все попытки обнаружить их пока не увенчались успехом.

1 ... 5 6 7 ... 59
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Как работает вселенная. Введение в современную космологию - Сергей Парновский», после закрытия браузера.

Комментарии и отзывы (0) к книге "Как работает вселенная. Введение в современную космологию - Сергей Парновский"