Онлайн-Книжки » Книги » 👨‍👩‍👧‍👦 Домашняя » Найти умного. Как проверить логическое мышление и творческие способности кандидата - Уильям Паундстоун

Читать книгу "Найти умного. Как проверить логическое мышление и творческие способности кандидата - Уильям Паундстоун"

205
0

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 56 57 58 ... 71
Перейти на страницу:

Таким образом, уже только за счет сосуда А вероятность выбора красного шарика составит 50 процентов. Но у вас еще осталось 49 красных шариков, которые вы должны положить в сосуд вместе с 50 синими. В этом случае, если будет выбран сосуд В, шансы выбрать красный шарик из этого сосуда также будут почти 50 на 50 (в действительности эта вероятность равна 49 из 99). Таким образом, вероятность выбора красного шарика в целом (когда шарик случайным образом берется из одного из двух сосудов) будет чуть меньше 75 процентов (50 % + 1/2 от 49/99, а если сосчитать точно – 74,74 %).

Вот такой трюк используется при определении избирательных округов.

? У вас есть два ведра емкостью 3 литра и 5 литров и неограниченный запас воды. Как можно отмерить точно 4 литра воды?

Давайте подумаем о том, какое количество воды вы можете отмерить. Опустите 3-литровое ведро в колодец с неисчерпаемым запасом воды и вытащите его с водой: вот вам 3 литра воды. Проделайте то же самое с другим ведром – вот и еще 5 литров.

Для того чтобы отмерить любое другое количество, вам нужно разрешить неопределенность в формулировке условия задачи. Какие действия разрешается совершать, чтобы «точно отмерять нужное количество воды?»

Если бы у вас был «не глаз, а алмаз», вы могли бы на глазок отлить точно 1 литр воды из 5-литрового ведра. Это и было бы решением задачи. Очевидно, так вы поступить не можете – иначе вам бы не задавали эту задачу.

Конечно, вы можете добавлять воду. Если бы вам удалось каким-то образом налить по 2 литра воды в 3-литровое ведро и в 5-литровое, то, перелив содержимое 3-литрового ведра в 5-литровое, вы бы получили ровно 4 литра воды.

Но, похоже, что эта операция ничего вам не дает. Вам даже никак не получить 3 + 3 = 6 литров воды, потому что в 5-литровом ведре 6 литров воды не поместится. Вы можете подумать о том, чтобы переливать отмеренное количество воды в ванну, пустой плавательный бассейн, пересохшее озеро – да куда угодно. Интервьюер не разрешит вам делать это. Вы можете представить, что находитесь на планете, которая вся покрыта океаном, и ваши два ведра – это единственные сосуды в этом мире.

Раз уж сложение не помогает решить эту задачу, вы можете попробовать использовать чуть более сложное действие, а именно вычитание. Налейте 5 литров воды в большее ведро, а затем аккуратно переливайте воду в 3-литровое ведро, пока оно не заполнится. А теперь стоп! Если вы ничего не пролили, то теперь у вас в 5-литровом ведре ровно 2 литра воды.

Если вы их оставите в 5-литровом ведре, то никогда не решите эту задачу. Единственный способ продвинуться в ее решении – опорожнить 3-литровое ведро и перелить два литра из 5-литрового ведра в 3-литровое.

Теперь вам нужно наполнить до краев 5-литровое ведро, а затем аккуратно отливать из него воду в 3-литровое ведро, пока оно не заполнится до краев. Таким способом вы отольете из 5-литрового ведра 1 литр воды, а это значит, что в нем останется 4 литра воды.

Альтернативное решение (для него потребуется переливать воду на один раз больше) – это наполнить 3-литровое ведро водой и перелить из него воду в 5-литровое ведро. Потом проделать это еще один раз и снова перелить воду в 5-литровое ведро, пока оно не заполнится до краев (тогда в 3-литровом ведре останется 1 литр воды). Теперь вылейте воду из 5-литрового ведра. Перелейте 1 литр воды в пустое 5-литровое ведро. Снова наполните 3-литровое ведро и перелейте из него воду в 5-литровое ведро, после чего в нем окажется 4 литра воды.

У.У. Раус Болл упоминает эту головоломку в своем сборнике «Математические досуги и эссе», 1892 год (Mathematical Recreations and Essays), популярном в викторианскую эпоху. Болл считал, что эту головоломку придумали в Средние века.

Хотя Льюис Терман использовал более простую версию этой задачи в своем первом тесте IQ (см. главу 2), он сообщал, что две трети «обычных взрослых людей» не успевали решить эту задачу за отведенные на это пять минут. «Если читателю покажется, что для решения этой задачи от него требуется слишком много изобретательности, – писал Терман, – стоит напомнить читателю, что в истории человечества важные изобретения не рождались неожиданно, подобно Минерве[12], но делались постепенно, шаг за шагом».

Минерва-Шминерва – версия задачи, использованная Терманом, действительно легкая. Это может отражать долговременную тенденцию увеличения «среднего» балла IQ (которую можно отметить, если вы используете для тестирования интеллекта тот же набор вопросов, что использовался в прошлом). В отличие от ожиданий Термана, среда оказывает существенное влияние на балл IQ.

Более трудная версия этой задачи, применявшаяся Microsoft, была использована в фильме «Крепкий орешек», 1995 год (Die Hard with a Vengeance). В этом фильме коварный преступник так настроил бомбу, что она должна была взорваться, если бы Брюс Уиллис и Сэмюель Л. Джексон не решили бы эту задачу. В их распоряжении был фонтан в парке и два пластмассовых ведра указанных размеров. Отмеренную воду нужно было поставить на весы. Они не могли гадать и действовать приблизительно, потому что бомба взорвалась бы даже если бы они ошиблись всего на одну унцию (28,3 грамма). Они не могли и просто уйти, потому что у бомбы был «детектор близости цели». Уиллис и Джексон смогли найти решение, да еще и дружески переругивались при этом («Я тебе не нравлюсь, потому что я белый!» / «Ты мне не нравишься, потому что я из-за тебя могу взлететь на воздух!»).

? Один из ваших работников настаивает на том, чтобы ему платили золотом каждый день…

Вам нужен один кусок золота, чтобы заплатить вашему работнику за первый день. Очевидный способ – отрезать один кусок от конца золотого слитка. Менее очевидный способ: отрезать этот кусок в середине слитка, использовав для этого оба разрешенных вам разреза. Попробуйте сначала очевидный план (оставив за собой право пересмотреть свое решение). Вы отрезаете один кусок от конца бруска и отдаете его работнику.

Это оставляет вам слиток, состоящий еще из шести кусков, и один разрез.

На второй день вы можете отрезать еще один кусок на конце слитка, но тогда у вас останется слиток из пяти кусков, а отрезать от него уже больше ничего нельзя. Вам нечем будет платить работнику на третий день.

Альтернативное решение – отрезать сегмент, состоящий из двух кусков. Тогда в конце второго дня вы можете отдать его работнику и получить от него назад один кусок как сдачу (при этом вы должны надеяться на то, что работник этот кусок еще не потратил).

Это оставит вас со слитком, состоящим из четырех кусков, одним куском, который вы получили как сдачу, а разрезов больше вы уже делать не можете. На третий день вы отдаете работнику один кусок. На четвертый день вы отдаете ему то, что осталось от слитка, то есть четыре куска, а два меньших он вам возвращает как сдачу. Затем вы аналогичным образом используете их, чтобы заплатить работнику на пятый, шестой и седьмой день.

1 ... 56 57 58 ... 71
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Найти умного. Как проверить логическое мышление и творческие способности кандидата - Уильям Паундстоун», после закрытия браузера.

Комментарии и отзывы (0) к книге "Найти умного. Как проверить логическое мышление и творческие способности кандидата - Уильям Паундстоун"