Онлайн-Книжки » Книги » 👨‍👩‍👧‍👦 Домашняя » Квантовая вселенная. Как устроено то, что мы не можем увидеть - Джефф Форшоу

Читать книгу "Квантовая вселенная. Как устроено то, что мы не можем увидеть - Джефф Форшоу"

293
0

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 53 54 55 ... 65
Перейти на страницу:

Происхождение массы

Заявляя, что частицы могут как перескакивать из точки в точку, так и рассеиваться, мы вступаем в область квантовой теории поля. Переход и рассеивание – это практически все, чем она занимается. Однако мы пока почти не упоминали массу, потому что решили оставить самое интересное напоследок.

Современная физика частиц призвана дать ответ на вопрос о происхождении массы и дает его с помощью прекрасного и удивительного раздела физики, связанного с новой частицей. Причем новая она не только в том смысле, что мы еще не встречали ее на страницах этой книги, но и потому, что на самом деле никто на Земле еще не встречался с ней «лицом к лицу». Эта частица называется бозоном Хиггса, и БАК уже близок к ее обнаружению. К сентябрю 2011 года, когда мы пишем эту книгу, на БАК наблюдался любопытный объект, подобный бозону Хиггса, но пока произошло недостаточно событий[51], чтобы решить, он это или нет. Возможно, это были лишь интересные сигналы, которые при дальнейшем рассмотрении исчезли. Вопрос о происхождении массы особенно замечателен тем, что ответ на него ценен и помимо нашего очевидного желания узнать, что такое масса. Попытаемся объяснить это довольно загадочное и странным образом сконструированное предложение более подробно.

Когда мы говорили о фотонах и электронах в квантовой электродинамике, ввели правило перехода для каждого из них и отметили, что эти правила отличаются: для связанного с переходом электрона из точки А в точку В мы использовали символ P(A, B), а для соответствующего правила, связанного с фотоном, – символ L(A, B). Настало время рассмотреть, насколько сильно отличаются правила в этих двух случаях. Разница состоит, например, в том, что электроны делятся на два типа (как мы знаем, они «крутятся» одним из двух различных способов), а фотоны – на три, но это различие нас сейчас интересовать не будет. Мы обратим внимание на другое: электрон обладает массой, а фотон – нет. Именно это мы и будем исследовать.

На рис. 11.4 показан один из вариантов, как мы можем представить распространение частицы, обладающей массой. Частица на рисунке перескакивает из точки А в точку В за несколько стадий. Она переходит из точки А в точку 1, из точки 1 в точку 2 и так далее, пока, наконец, не попадает из точки 6 в точку В. Интересно, однако, что в таком виде правило для каждого скачка – это правило для частицы с нулевой массой, но с одной важной оговоркой: каждый раз, когда частица меняет направление, мы должны применить новое правило уменьшения циферблата, причем величина уменьшения обратно пропорциональна массе описываемой частицы. Это значит, что при каждом переводе часов циферблаты, связанные с тяжелыми частицами, уменьшаются менее резко, чем циферблаты, связанные с более легкими частицами. Важно подчеркнуть, что это правило системное.


Рис. 11.4. Массивная частица, движущаяся из точки А в точку В


И зигзагообразное движение, и уменьшение циферблата непосредственно вытекают из правил Фейнмана для распространения массивной частицы без каких-то других предположений[52]. На рис. 11.4 показан лишь один способ попадания частицы из точки А в точку В – после шести поворотов и шести уменьшений. Чтобы получить итоговый циферблат, связанный с массивной частицей, переходящей из точки А в точку В, мы, как всегда, должны сложить бесконечное количество циферблатов, связанных со всеми возможными способами, которыми частица может проделать свой зигзагообразный путь из точки А в точку В. Самый простой способ – прямой путь без всяких поворотов, но придется принять во внимание и маршруты с огромным количеством поворотов.

Для частиц с нулевой массой уменьшающий коэффициент, связанный с каждым поворотом, просто убийственен, потому что бесконечен. Иными словами, после первого же поворота мы уменьшаем циферблат до нуля. Таким образом, для частиц без массы имеет значение только прямой маршрут – другим траекториям просто не соответствует никакой циферблат. Именно этого мы и ожидали: для частиц без массы мы можем использовать правило скачка. Однако для частиц с ненулевой массой повороты разрешены, хотя если частица очень легкая, то коэффициент уменьшения налагает суровое вето на траектории со многими поворотами.

Таким образом, наиболее вероятные маршруты содержат мало поворотов. И наоборот, тяжелым частицам не грозит слишком большой уменьшающий коэффициент при повороте, так что они чаще описываются маршрутами с зигзагообразным движением. Поэтому можно считать, что тяжелые частицы можно считать частицами без массы, которые двигаются из точки А в точку В зигзагообразно. Количество зигзагов – это и есть то, что мы называем «массой».

Все это замечательно, потому что теперь у нас появился новый способ представления массивных частиц. На рис. 11.5 показано распространение трех разных частиц с возрастающей массой из точки А в точку В. Во всех случаях правило, связанное с каждым «зигзагом» их пути, совпадает с правилом для частицы без массы, и за каждый поворот приходится расплачиваться уменьшением циферблата. Но не следует слишком радоваться: пока мы еще не объяснили ничего фундаментального. Все, что пока удалось сделать, – это заменить слово «масса» словами «стремление к зигзагам». Это можно было сделать, потому что оба варианта – математически эквивалентные описания распространения массивной частицы. Но даже при таких ограничениях наши выводы кажутся интересными, а сейчас мы узнаём, что это, оказывается, не просто математический курьез.


Рис. 11.5. Частицы с возрастающей массой движутся из точки А в точку В. Чем более массивна частица, тем больше зигзагов в ее движении


Перенесемся в царство умозрительного – хотя к тому моменту, когда вы будете читать эту книгу, теория может уже и получить свое подтверждение.

1 ... 53 54 55 ... 65
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Квантовая вселенная. Как устроено то, что мы не можем увидеть - Джефф Форшоу», после закрытия браузера.

Комментарии и отзывы (0) к книге "Квантовая вселенная. Как устроено то, что мы не можем увидеть - Джефф Форшоу"