Онлайн-Книжки » Книги » 👨‍👩‍👧‍👦 Домашняя » Физика и жизнь. Законы природы: от кухни до космоса - Элен Черски

Читать книгу "Физика и жизнь. Законы природы: от кухни до космоса - Элен Черски"

190
0

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 53 54 55 ... 90
Перейти на страницу:

У мира цифровых измерительных устройств масса преимуществ, но есть и один несомненный недостаток: мы утратили связь с тем, что измерения означают в действительности. Одна из самых печальных потерь – стеклянный термометр, важнейший измерительный прибор в научных лабораториях и в быту на протяжении двух с половиной столетий. Вы все еще можете купить его в аптеке. Я по-прежнему пользуюсь такими термометрами в своей лаборатории, однако во многих других местах их вытеснили цифровые аналоги. На смену блестящей полоске ртути, которую я помню с детства, пришел подкрашенный спирт, но современная версия стеклянного термометра остается, по сути, такой же, как прибор, изобретенный Фаренгейтом в 1709 году, – узкий стеклянный стержень с еще более узкой трубкой внутри, пролегающей по всей его длине. На нижнем конце она расширяется, превращаясь в пузырек, служащий резервуаром для жидкости. Поместите этот конец термометра во что-либо – ванну, наполненную водой, себе под мышку, в море – и наблюдайте за процессом, сколь элегантным, столь и простым. Температура любого объекта непосредственно связана с величиной тепловой энергии, которой он обладает. В жидкостях и твердых телах тепловая энергия проявляется в виде колебаний атомов и молекул. Если термометр поместить в горячую ванну, то его холодное стекло будет окружено горячей водой. Молекулы воды движутся быстрее и, наталкиваясь на атомы стекла, придают им дополнительную энергию, заставляющую их также убыстряться. Этот процесс называется теплопроводностью. Таким образом, когда вы помещаете термометр в ванну с горячей водой, тепловая энергия передается стеклу. Атомы стекла никуда не уходят, а просто «ерзают» на месте, колеблясь из стороны в сторону. Температура стекла и будет показателем интенсивности этого «ерзания»: стекло нагревается. Затем его атомы начинают интенсивнее взаимодействовать с жидким спиртом, атомы которого, в свою очередь, тоже начинают колебаться быстрее. Это первая часть: пузырек термометра нагревается до тех пор, пока его температура не сравняется с температурой окружающей среды.

Когда атомы твердого тела в результате нагрева колеблются быстрее, они расталкивают – совсем немного – соседние атомы. Стекло при нагревании расширяется, потому что его атомам, колеблющимся энергичнее, чем прежде, требуется больше пространства. Но молекулы спирта при нагревании разбегаются в разные стороны на гораздо большие расстояния: при повышении температуры на одну и ту же величину спирт расширяется примерно в тридцать раз больше, чем стекло. Теперь спирт в пузырьке термометра занимает большее пространство, и единственное место, куда он может устремляться при расширении, – это трубка термометра. По мере роста интенсивности движения молекул спирта жидкость поднимается вверх по трубке термометра. Высота ее поднятия напрямую зависит от тепловой энергии молекул спирта, что позволяет проградуировать термометр в соответствии с величиной тепловой энергии, которой обладает жидкость. Элегантно и просто! Когда жидкость в пузырьке термометра охлаждается, спирт занимает меньший объем, поскольку движение его молекул замедляется. Когда жидкость в пузырьке термометра нагревается, спирт занимает больший объем, так как его молекулы движутся энергичнее. Таким образом, показания стеклянного термометра позволяют нам оценивать энергию соударений атомов жидкости, содержащейся в пузырьке термометра.

При нагревании различные материалы расширяются по-разному. Вот почему нам легче открыть крышку, слишком плотно сидящую на банке с вареньем, поместив ее под струю горячей водой из крана. Под воздействием горячей воды происходит расширение и стеклянной банки, и металлической крышки, но металл расширяется в значительно большей степени, чем стекло. Когда крышка расширится, снять ее с банки гораздо легче. Разность расширения стеклянной банки и металлической крышки оценить на глаз практически невозможно, но разность усилий, требуемых до и после использования горячей воды, вы оцените без проблем.

Как правило, твердые тела при нагревании расширяются меньше, чем жидкости. Расширение составляет лишь ничтожную долю от общего объема, но этого достаточно, чтобы почувствовать разницу. Когда в следующий раз будете пешком переходить дорожный мост, обратите внимание на металлическую полосу, проложенную поперек дороги на обоих концах моста. Она изготовлена из двух сцепленных друг с другом гребнеобразных пластин. Это компенсатор теплового расширения, которым снабжены почти все современные мосты. Его идея заключается в том, что при повышениях и снижениях температуры эти гребнеобразные пластины позволяют материалам, из которых построен мост, расширяться и сжиматься так, чтобы это не приводило к образованию трещин и дальнейшему разрушению моста. Если секции моста расширяются, «пальцы» гребнеобразной пластины сдвигаются (входят в большее взаимное зацепление); если же секции моста сжимаются, «пальцы» гребнеобразной пластины раздвигаются, но это практически незаметно для транспорта и пешеходов.

Принцип действия термометра основан на явлении температурного расширения. В данном случае оно играет положительную роль, но порой может иметь весьма серьезные последствия. Одна из проблем, обусловленных значительными выбросами парниковых газов, – неуклонное повышение уровня Мирового океана. В настоящее время его средние глобальные темпы составляют примерно 3 миллиметра за год, причем с течением времени они ускоряются. По мере таяния ледников вода, которая была сосредоточена на Земле, пополняет воды Мирового океана. Однако таяние ледников – источник примерно половины нынешнего прироста уровня Мирового океана. Другая половина вызвана температурным расширением. В ходе нагрева океаны занимают большее пространство. По текущим оценкам, 90 % всей дополнительной тепловой энергии, которую Земля получает в результате глобального потепления, скапливается в океанах, вследствие чего наблюдается дополнительный подъем уровня Мирового океана.

В августе на Восточно-Антарктическом плато царят тишина и безмолвие. Пока Северное полушарие Земли нежится в лучах летнего солнца, Антарктика погружена во мрак. На гряде высоких гор, которая тянется через все плато, близится конец полярной ночи, длившейся четыре месяца. Здесь выпадает очень мало снега, но толщина ледяного покрова достигает 600 метров. Погода спокойная. Тепловая энергия постоянно вымывается в звездную ночь, но здесь нет солнечного света, который восполнил бы ее убыль. Этот дефицит означает, что вдоль всего высокогорного хребта зимняя температура обычно составляет –80 ℃. Но 10 августа 2010 года температура в этом районе опустилась до рекордных –93,2 ℃ – самой низкой из когда-либо регистрируемых на Земле.

В кристаллах льда, из которых состоит снег, тепловая энергия хранится в виде энергии движения (колебания) атомов, находящихся в строго фиксированных позициях в кристаллической решетке твердого льда. Таким образом, ответ на вопрос, до какого уровня может опуститься температура, достаточно прост: до точки, когда движение атомов прекращается полностью. Но даже в самом холодном месте на планете, где нет ни жизни, ни солнечного света, движение существует. Все плато состоит из колеблющихся атомов. Они обладают примерно половиной энергии движения, которую бы имели при температуре, близкой к температуре плавления льда (0 ℃). Если у атомов воды отобрать всю эту энергию, то температура льда равнялась бы максимально возможной отрицательной температуре. Такая температура называется абсолютным нулем и составляет –273,15 ℃. Она одинакова для любых атомов и любой ситуации и означает полное отсутствие тепловой энергии. В сравнении с абсолютным нулем даже Антарктика в зимний период, несмотря на то что это самое холодное место на планете, кажется довольно теплой. К счастью, замедлить движение атомов до полной остановки очень трудно. Нужна незаурядная изобретательность, чтобы гарантировать, что ничто поблизости не поделится частью своей энергии с образцом, который вы пытаетесь охладить до температуры абсолютного нуля, и не нарушит ваш эксперимент. Немало ученых посвятили жизнь изобретению самых хитроумных способов удаления тепловой энергии из материи. Речь идет о так называемой криогенной технике, позволяющей создавать устройства, которые приносят пользу даже в нашем прекрасном теплом мире, в частности усовершенствованные магниты и приборы для получения изображений внутренних органов в медицине. Однако большинству из нас противна сама мысль о переохлаждении. Вот почему нас так удивляет спокойствие уток, расхаживающих вразвалочку по льду «босиком».

1 ... 53 54 55 ... 90
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Физика и жизнь. Законы природы: от кухни до космоса - Элен Черски», после закрытия браузера.

Комментарии и отзывы (0) к книге "Физика и жизнь. Законы природы: от кухни до космоса - Элен Черски"