Читать книгу "Наша математическая вселенная. В поисках фундаментальной природы реальности - Макс Тегмарк"
Шрифт:
Интервал:
Закладка:
Две волны способны без помех проходить друг сквозь друга, как круги на поверхности воды (рис. 7.6, слева). В любой момент их воздействия просто складываются. В некоторых местах видно, что гребни двух волн складываются в ещё более высокий гребень (конструктивная интерференция), в других местах гребень одной волны подавляется впадиной другой, оставляя воду совершенно невозмущённой (деструктивная интерференция). На поверхности Солнца (рис. 7.6, справа) наблюдаются звуковые волны в горячем газе (плазме). Если такая волна обойдёт вокруг Солнца (справа), она погасит сама себя в результате деструктивной интерференции, если только не совершит за время обхода целое число колебаний, чтобы, вернувшись, совпасть с самой собой. Это значит, что, как и флейта, Солнце колеблется только на некоторых определённых частотах.[35]
В своей диссертации 1924 года де Бройль применил это рассуждение к волнам, распространяющимся не по Солнцу, а по атому водорода, и получил точно те же частоты и энергии, которые предсказывала модель Бора. А двухщелевой эксперимент (рис. 7.7) более явно продемонстрировал, что частицы ведут себя как волны.
Волновая картина делает нагляднее и объяснение того, почему атомы не коллапсируют, как предсказывает классическая физика: если попытаться заключить волну в очень малое пространство, она немедленно начнёт распространяться в стороны. Например, если дождевая капля падает на поверхность воды в тазу, она сначала возмущает воду лишь в очень небольшой области, с которой она соприкоснулась, но возмущение начинает быстро распространяться во все стороны в виде кольцевых волн (рис. 7.6). В этом суть принципа неопределённости Гейзенберга. Вернер Гейзенберг показал: если зажать некий объект в малую область пространства, он приобретёт огромный случайный импульс, который заставит его двигаться и чувствовать себя менее стеснённым. Иными словами, объект не может одновременно иметь точное положение и точную скорость![36] Это означает, что если атом водорода попробует коллапсировать (рис. 7.5, слева), притянув электрон к протону, то растущая «зажатость» придаст электрону достаточный импульс, а с ним и скорость, чтобы вновь улететь на высокую орбиту.
Диссертация де Бройля вызвала большое волнение, и в ноябре 1925 года Эрвин Шрёдингер провёл по ней семинар в Цюрихе. После его доклада Питер Дебай задал ключевой вопрос: «Вы говорите о волнах, но где же волновое уравнение?» Шрёдингер взялся его вывести и подобрал (рис. 7.4) отмычку к большей части современной физики. Эквивалентная формулировка, использующая таблицы чисел, называемые матрицами, была примерно в то же время предложена Максом Борном, Паскуалем Йорданом и Вернером Гейзенбергом. На этом новом математическом фундаменте квантовая теория испытала взрывной рост. Всего за несколько лет удалось успешно объяснить целый ряд прежде непонятных результатов измерений, включая спектры сложных атомов и различные числовые параметры, описывающие свойства химических реакций. Наконец, квантовая физика дала нам лазер, транзистор, интегральные схемы, компьютеры и смартфоны. Развитием успеха квантовой механики стала расширяющая её квантовая теория поля, которая лежит в основе передовых современных исследований, таких как поиск частиц тёмной материи.
Что служит признаком хорошей науки? Есть несколько определений науки, которые мне нравятся, и одно из них — это сжатие данных, объяснение многого посредством немногого. От хорошей науки вы получаете больше, чем в неё закладываете. Я применил обычную программу-архиватор к текстовому файлу, содержащему черновик этой главы, и он сжался втрое за счёт использования закономерностей и шаблонов, которые встречаются в моём тексте. Сравним это с квантовой механикой. Я только что загрузил со страницы http://physics.nist.gov/PhysRefData/ASD/lines_form.html список более чем из 20 тыс. спектральных линий, для которых в лабораториях по всему миру тщательно измерены частоты. С учётом закономерностей и повторяющихся структур, содержащихся в этих данных, уравнение Шрёдингера позволяет сжать их всего до трёх чисел: постоянной тонкой структуры α ≈ 1/137,036, которая задаёт силу электромагнетизма; числа 1836,15, которое указывает, во сколько раз протон тяжелее электрона, и орбитальной частоты водорода. Это эквивалентно такому сжатию данных, при котором моя книга сократится до одного предложения!
Эрвин Шрёдингер — один из моих физиков-супергероев. Когда я был постдоком в Институте физики общества им. Макса Планка в Мюнхене, копировальная машина в тамошней библиотеке разогревалась так долго, что я коротал время, снимая с полок и просматривая классические книги. Однажды я взял журнал «Анналы физики» за 1926 год и поразился: почти всё, изучавшееся мной на лекциях по квантовой теории в аспирантуре, было описано в четырёх статьях Шрёдингера! Он был не только блестящим физиком, но и свободным мыслителем: он отвергал авторитеты, размышлял и делал то, что считал правильным. Получив профессорскую должность в Институте Общества им. Макса Планка в Берлине, одну из самых престижных в мире, Шрёдингер подал в отставку в знак протеста против преследования нацистами своих коллег-евреев. Затем он отклонил предложение поработать в Принстоне, поскольку там не одобряли его взгляды на брак (он жил с двумя женщинами и имел ребёнка от той, на которой не был женат). Предприняв в 1996 году, во время отпуска в Австрии, паломничество к могиле Шрёдингера, я обнаружил, что свободомыслие не в почёте и в родном городке учёного. Как видно на сделанной мной фотографии (рис. 7.4), крошечный Альпбах похоронил своего самого знаменитого гражданина в предельно скромной могиле на самом краю кладбища.
Но что это за волны, которые описываются уравнением Шрёдингера? Главная загадка квантовой механики по сей день сохраняет свою глубину и дискуссионность.
Когда физики что-то описывают математически, обычно описание должно включать две вещи:
1. Состояние в заданное время.
2. Уравнение, описывающее, как это состояние будет изменяться во времени.
Например, для описания орбиты Меркурия Ньютон определял его состояние шестью числами: три задают положение его центра (скажем, его x-, y– и z-координаты), а ещё три — компоненты скорости по этим направлениям.[37] В качестве уравнений движения он применил закон (известен теперь как закон Ньютона), гласящий: ускорение определяется гравитационным притяжением Солнца, которое зависит от расстояния до Солнца по закону обратных квадратов.
Внимание!
Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Наша математическая вселенная. В поисках фундаментальной природы реальности - Макс Тегмарк», после закрытия браузера.