Онлайн-Книжки » Книги » 👽︎ Фэнтези » Наука Плоского мира. Книга 2. Глобус - Йен Стюарт

Читать книгу "Наука Плоского мира. Книга 2. Глобус - Йен Стюарт"

266
0

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 51 52 53 ... 100
Перейти на страницу:

Отправляя сообщение, вы, очевидно, должны заплатить – иначе тот, кто будет осуществлять его передачу, будет иметь право выразить вам свое недовольство. Именно это свойство сообщений и взволновало Чудакулли, который никак не мог отвыкнуть от мысли, что академики должны путешествовать бесплатно.

Цена – это лишь одна из мер измерения, но она зависит от сложных рыночных условий. Например, какой она будет, если откроется распродажа? Для науки понятие меры информации – это объем отправляемых сообщений. В человеческом понимании, похоже, сложился универсальный принцип, согласно которому средние или длинные сообщения обходятся дороже, чем короткие. А значит, в глубине людского разума таится глубокое убеждение, что сообщения могут измеряться – они имеют размер, который показывает, какое количество информации оно содержит.

Неужели «информация» и «история» – это одно и то же? Нет. Истории передают информацию, но это, пожалуй, наименее интересное, что о них можно сказать. Бо́льшая часть информации не составляет собой историй. Возьмем для примера телефонный справочник: в нем содержится много информации, он имеет определенную форму, но весьма слаб в повествовании. А для истории важен смысл, и в этом она здорово расходится с понятием информации.

Мы гордимся тем, что живем в информационный век. И это плохо. Если мы когда-нибудь доживем до века смыслового, но сумеем наконец понять, в каком месте сбились с пути.

Информация – это не материальная вещь, а понятие. Однако из-за людской привычки материализовывать понятия ученые воспринимают информацию, будто она и в самом деле реальна. Некоторые физики даже начинают задумываться, не состоит ли наша вселенная из информации?

Как же возникла эта точка зрения и насколько справедливой ее можно считать?


Человечество приобрело способность измерять информацию в 1948 году, когда математик и инженер Клод Шеннон нашел метод определения количества информации, содержащейся в сообщении, – сам он предпочитал термин «сигнал», – передаваемом в виде определенного кода. Под сигналом он подразумевал ряд двоичных чисел («битов», 0 или 1), который сегодня повсеместно используется как в современных компьютерах и устройствах связи, так и в семафоре Мюррея. Кодом Шеннон называл особую процедуру, преобразующую исходный сигнал в нечто иное. Простейший код банально оставляет все «как было», а более сложные применяются для обнаружения или даже коррекции ошибок, допущенных при передаче. В инженерных приложениях коды занимают центральное место, но для наших целей достаточно их опустить, предположив, что сообщения передаются в открытом виде.

Мера информации Шеннона численно выражает степень, на которую снижается неопределенность относительно бит, составляющих сигнал, в результате получения сообщения. Вот простейший пример, в котором сообщение представляет собой ряд нулей и единиц, и каждый из них одинаково вероятен, а количество информации в сообщении совершенно определено и равняется общему количеству двоичных чисел. Каждое число, получаемое нами, снижает нашу неопределенность относительно значения конкретно этого числа (это 0 или 1?) до определенности (скажем, 1), но ничего не говорит нам об остальных числах, то есть мы получаем только один бит информации. Проделайте то же самое тысячу раз и получите тысячу бит информации. Ничего сложного.

Предположим, нас сейчас интересует не смысл сигнала, а его побитное наполнение – такое восприятие близко инженерам связи. Итак, сообщение 111111111111111 содержит 15 бит информации, равно как и 111001101101011. Но понятие Шеннона об информации – не единственное. Позднее Грегори Хайтин отметил, что содержание шаблонов в сигнале может быть выражено количественно. Для этого нужно смотреть на размер не сообщения, а компьютерной программы, или алгоритма, который она может сгенерировать. Например, первое из вышеуказанных сообщений представляет алгоритм «каждое число равно 1». Но второе сообщение нельзя охарактеризовать столь же просто – его можно лишь побитно переписать. Таким образом, эти два сообщения имеют одинаковое содержание согласно Шеннону, но с точки зрения Хайтина второе сообщение содержит гораздо более «алгоритмическую информацию», чем первое.

Иными словами, понятие Хайтина рассматривает степень, до которой сообщение способно «сжиматься». Если короткая программа сгенерирует длинное сообщение, то мы можем передать программу вместо сообщения, сохранив время и деньги. А программа при этом «сжимает» сообщение. Когда компьютер получает большой графический файл – например, фотографию – и превращает ее в меньший, в формате JPEG, он использует стандартный алгоритм для сжатия информации, содержащейся в исходном файле. Это возможно благодаря тому, что в фотографиях содержится множество шаблонов: к примеру, повторяющиеся голубые пиксели, из которых состоит небо. Чем менее сжимаемым является сигнал, чем больше информации, согласно Хайтину, он содержит. А чтобы его сжать, нужно описать шаблоны, которые в нем содержатся. Отсюда следует, что несжимаемые сигналы случайны, не имеют шаблонов и при этом содержат максимальный объем информации. С одной стороны, это логично: когда каждый следующий бит максимально непредсказуем, вы получаете больше информации, когда узнаёте его значение. Если в сигнале содержится 111111111111111, то маловероятно, что следующий бит тоже окажется 1; но если в сигнале содержится 111001101101011 (для того чтобы получить это значение, мы пятнадцать раз подбросили монету), то очевидной возможности угадать следующий бит у нас нет.

Оба способа измерения информации могут оказаться полезными при разработке электронных технологий. Информация Шеннона определяет время, необходимое для передачи сигнала, в то время как информация Хайтина сообщает о наличии подходящего метода сжатия информации, чтобы передать ее в коротком виде. По крайней мере, так было бы, если ее подлежала расчету, но одна из особенностей теории Хайтина заключается как раз в невозможности расчета количества алгоритмической информации в сообщении – и он сумел это доказать. Волшебники наверняка оценили бы его прием.

Таким образом, «информацию» стоит считать полезным понятием, хотя и странно, что «Быть или не быть?», согласно Шеннону, содержит столько же информации, сколько «чнЙПКдакнг?в%ыл0ц». А все потому, что информация и смысл – это разные вещи. Что ничуть не удивительно. Для людей в сообщении важно не количество бит, а его смысл, но математики не умеют выражать его в количественном виде. Пока что.

Сообщения, несущие в себе смысл, возвращают нас к историям. Суть в том, что мы не должны путать истории с «информацией». Эльфы дали людям истории, но не информацию. И вообще, в историях, придуманных людьми, присутствует то, чего даже не существует в Круглом мире, – например оборотни. В них не содержится никакой информации – кроме разве что той, которая может рассказать вам о человеческом воображении.


Большинство людей – особенно ученые – приходят в восторг, когда у них получается представить понятие в виде числа. Все остальное кажется им слишком размытым, чтобы принести какую-либо пользу. «Информация» – это число, поэтому она кажется нам такой точной, что мы не замечаем того, что она может оказаться ложной. По этому скользкому пути довольно далеко зашли две науки – биология и физика.

1 ... 51 52 53 ... 100
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Наука Плоского мира. Книга 2. Глобус - Йен Стюарт», после закрытия браузера.

Комментарии и отзывы (0) к книге "Наука Плоского мира. Книга 2. Глобус - Йен Стюарт"