Читать книгу "Величайшие математические задачи - Йен Стюарт"
Шрифт:
Интервал:
Закладка:
Группа Ласкара опубликовала первые результаты по долгосрочному поведению Солнечной системы в 1989 г. При этом в расчетах использовалась усредненная форма уравнений, восходящих еще к Лагранжу. Понятно, что в таком расчете некоторые мелкие подробности размываются и исключаются из рассмотрения. Расчеты группы показали, что положение Земли на орбите хаотично, почти как у Плутона: если мы измерим сегодняшнее положение нашей планеты и ошибемся на 15 м, то ее положение на орбите через 100 млн лет невозможно будет предсказать сколько-нибудь определенно.
Единственный способ снизить влияние хаоса состоит в многократном моделировании с чуть разными начальными данными. Это позволяет получить спектр возможных вариантов вместе с вероятностью каждого из них. В 2009 г. Ласкар и Микаэль Гастино применили эту методику к Солнечной системе, рассмотрев 2500 различных сценариев. Различия между ними чрезвычайно малы — к примеру, это может быть сдвиг положения Меркурия на 1 м. Примерно в 1 % вариантов будущего Меркурий становится нестабильным: он сталкивается с Венерой, рушится на Солнце или выбрасывается за пределы системы.
В 1999 г. Норман Мюррей и Мэтью Холман исследовали несоответствие результатов Арнольда и др., указывающих на стабильность, и моделирования, указывающего на нестабильность. «В чем дело? — спрашивали они. — Может быть, неверны численные результаты, а может быть, классические расчеты здесь неприменимы?» Воспользовавшись аналитическими, а не численными методами, они продемонстрировали, что классические расчеты применять нельзя. Возмущения, необходимые для отражения реальности, слишком велики. Главный источник хаоса в Солнечной системе — близкое к резонансному состояние системы Юпитера, Сатурна и Урана и еще одной системы — Сатурна, Урана и Нептуна, хотя ее близость к резонансу не столь важна. Для проверки этого положения они использовали численные методы; получилось, что горизонт предсказания — мера времени, за которое небольшие ошибки приобретут достаточные масштабы, чтобы вызвать серьезные последствия, — составляет приблизительно 10 млн лет{28}. Их моделирование показывает, что Уран иногда опасно сближается с Сатурном, поскольку эксцентриситет его орбиты меняется хаотически и существует вероятность, что когда-нибудь он будет вообще выброшен прочь из Солнечной системы. Однако вероятное время такого события наступит через 1018 лет. Солнце взорвется и превратится в красный гигант гораздо раньше, примерно через 5 млрд лет. Это событие, естественно, скажется на всех планетах, не в последнюю очередь потому, что само Солнце при этом потеряет 30 % массы. Земля отодвинется прочь от Солнца и, возможно, сумеет избежать захвата необычайно расширившимся светилом. Однако в настоящее время считается, что приливные взаимодействия со временем все же затянут Землю внутрь Солнца, а океаны нашей планеты вскипят и испарятся задолго до этого. Но поскольку типичная продолжительность жизни вида, с эволюционной точки зрения, не превышает 5 млн лет, нам вряд ли стоит беспокоиться обо всех этих потенциальных катастрофах. Мы погибнем гораздо раньше от каких-нибудь других причин.
При помощи этих же методов можно исследовать прошлое Солнечной системы: берем те же уравнения и пускаем время назад — простой математический фокус. До недавнего времени астрономы склонны были считать, что планеты всегда находились примерно на нынешних своих орбитах, — с тех самых пор, как сконденсировались из газопылевого облака, окружавшего зарождающееся Солнце. Более того, на основании их состава и формы орбит делались выводы о размерах и составе того самого первичного газопылевого облака. Сегодня же ученые склоняются к мнению, что планеты начинали свое существование вовсе не на нынешних орбитах. По мере того как из пылевого облака под действием внутреннего тяготения образовывались планеты, Юпитер — самая массивная из них — начал выстраивать остальные тела, да и сами они постоянно влияли друг на друга. Такую гипотезу предложили в 1984 г. Хулио Фернандес и Винг-Хуен Ип, но какое-то время их работу рассматривали скорее как любопытную, но незначительную диковинку. В 1993 г. Рену Малхотра всерьез задумался о том, как изменения в орбите Нептуна могли влиять на остальные планеты-гиганты. К нему присоединились другие исследователи, и постепенно проявилась картина чрезвычайно динамичной юности нашей Солнечной системы.
Планеты продолжали формироваться, и пришло время, когда Юпитер, Сатурн, Уран и Нептун были уже почти готовы, но между ними циркулировало громадное количество скальных и ледяных планетезималей — небольших тел около 10 км в поперечнике. После этого эволюция Солнечной системы шла путем миграции и столкновения планетезималей. Многие из них были выброшены в пространство, что снизило суммарную энергию и момент импульса четырех планет-гигантов. Поскольку все эти миры обладали разными массами и находились на разных расстояниях от Солнца, то и реагировали они по-разному. Нептун стал одним из победителей в орбитальной схватке за энергию и в результате отошел подальше от светила. Уран и Сатурн сделали то же самое, но в меньшей степени. Юпитер же в смысле энергии остался в проигравших и сместился внутрь системы. Но он был столь массивен, что далеко не ушел.
Остальные, меньшие тела Солнечной системы, тоже испытали на себе действие этих перемен. Текущее состояние системы, вроде бы стабильное, возникло в результате затейливого танца гигантов, в ходе которого разыгравшийся хаос бросил мельчайшие тела навстречу друг другу. Так стабильна ли Солнечная система? Вероятно, нет, но человечеству не удастся убедиться в этом на практике.
В главе 2 мы рассматривали индивидуальные свойства простых чисел, и я сравнил их с зачастую непоследовательным и непредсказуемым поведением людей. Но люди обладают свободой воли, они могут принимать решения, исходя из своих соображений. А простые числа делают то, что подсказывает им логика арифметики, хотя нередко создается впечатление, что они тоже обладают собственной волей. Их поведение управляется странными совпадениями и часто лишено какой бы то ни было разумной структуры.
Тем не менее в мире простых чисел не правит анархия. В 1835 г. Адольф Кетле поразил современников, обнаружив математические закономерности в мире социальных явлений, которые зависят от сознательных решений разных людей или вмешательства судьбы: в мире рождений, свадеб, смертей, самоубийств. Закономерности были статистическими и касались не отдельных людей, а усредненного поведения больших человеческих масс. Именно так статистики извлекают порядок из индивидуальной свободы воли. Примерно в то же время математики начали осознавать, что такой фокус можно проделать и с простыми числами. Пусть каждое из них в отдельности — ярый индивидуалист, все вместе они подчиняются закону. Существуют скрытые закономерности.
Статистические закономерности проявляются тогда, когда мы рассматриваем сразу все множество простых чисел. К примеру: сколько простых чисел содержится в натуральном ряду до некоего определенного предела? На этот вопрос очень сложно ответить точно, но существуют прекрасные аппроксимации, и чем выше предел, тем точнее становятся приближенные значения. Иногда можно добиться, чтобы разница между приближенным и точным ответами была очень мала, но, как правило, это означало бы хотеть слишком многого. Большинство приближений в этой области являются асимптотическими. Это означает, что отношение приближенного значения к точному можно сделать очень близким к 1. При этом, хотя ошибка в процентах стремится к нулю, абсолютная ошибка может быть сколь угодно велика.
Внимание!
Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Величайшие математические задачи - Йен Стюарт», после закрытия браузера.