Онлайн-Книжки » Книги » 🤯 Психология » Верховный алгоритм. Как машинное обучение изменит наш мир - Педро Домингос

Читать книгу "Верховный алгоритм. Как машинное обучение изменит наш мир - Педро Домингос"

158
0

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 50 51 52 ... 96
Перейти на страницу:



Если на этом графике есть стрелка от одного узла к другому, мы говорим, что первый узел — родительский для второго. Следовательно, родители узла «Сигнализация» — «Взлом» и «Землетрясение», а «Сигнализация» будет единственным родителем узлов «Звонок Боба» и «Звонок Клэр». Байесовская сеть — это аналогичный график зависимостей, но каждой переменной присвоена табличка с ее вероятностью при всех сочетаниях ее родителей. У узлов «Взлом» и «Землетрясение» родителей нет, поэтому вероятность у них будет только одна. У «Сигнализации» их будет уже четыре: вероятность срабатывания, если нет ни взлома, ни землетрясения; вероятность срабатывания при взломе, но без землетрясения, и так далее. У узла «Звонок Боба» будут две вероятности (при наличии и отсутствии срабатывания сигнализации), и то же самое для звонка Клэр.

Это ключевой момент. Звонок Боба зависит от узлов «Взлом» и «Землетрясение», но только посредством узла «Сигнализация», то есть условно независим от взлома и землетрясения при условии срабатывания сигнализации, и то же самое с Клэр. Если сигнализация не сработала, соседи будут крепко спать и грабитель спокойно cделает свое дело. Также при условии срабатывания сигнализации звонки Боба и Клэр будут независимы друг от друга. Если бы этой структуры независимости не было, пришлось бы определить 25 = 32 вероятности, по одной для каждого возможного состояния пяти переменных. (Или 31, если вы педант, поскольку последнюю можно оставить неявной.) Если ввести условную независимость, останется определить всего 1 + 1 + 4 + 2 + 2 = 10 вероятностей, то есть экономия составит 68 процентов. И это только в этом маленьком примере. Когда переменных сотни и тысячи, экономия может приближаться к 100 процентам.

Первый закон экологии, согласно биологу Барри Коммонеру, заключается в том, что все взаимосвязано. Может быть, это действительно так, но в таком случае мир был бы непостижим, если бы не спасительная условная независимость: все связано, но лишь косвенно. Если что-то происходит на расстоянии километра, повлиять на меня это может только посредством чего-нибудь в моем соседстве, пусть даже это будут световые лучи. Как заметил один шутник, благодаря пространству с нами происходит не все сразу. Иначе говоря, структура пространства — это частный случай условной независимости.

В примере с ограблением полная таблица из 32 вероятностей не представлена явно, но она содержится в наборе меньших таблиц и структуре графа. Чтобы получить P(взлом, землетрясение, сигнализация, звонок Боба, звонок Клэр), нужно только перемножить P(взлом), P(землетрясение), P(сигнализация | взлом, землетрясение), P(звонок Боба | сигнализация) и P(звонок Клэр | сигнализация). То же самое в любой байесовской сети: чтобы получить вероятность полного состояния, просто перемножьте вероятности соответствующих линий в таблицах отдельных переменных. Поэтому при условной независимости информация не теряется из-за перехода на более компактное представление, и можно легко вычислить вероятности крайне необычных состояний, включая те, что до этого никогда не наблюдались. Байесовские сети показывают ошибочность расхожего мнения, будто машинное обучение неспособно предсказывать очень редкие события — «черных лебедей», как их называет Нассим Талеб.

Оглядываясь назад, можно заметить, что наивный байесовский алгоритм, цепи Маркова и СММ — это частные случаи байесовских сетей. Вот структура наивного Байеса:



Цепи Маркова кодируют допущение, что будущее условно независимо от прошлого при известном настоящем, а СММ дополнительно предполагает, что каждое наблюдение зависит только от соответствующего состояния. Байесовские сети для байесовцев — то же самое, что логика для символистов: лингва франка[90], который позволяет элегантно кодировать головокружительное разнообразие ситуаций и придумывать алгоритмы, которые будут работать в каждой из них.

Байесовские сети можно воспринимать как «порождающую модель», рецепт вероятностного генерирования состояния мира: сначала надо независимо решить, что произошло — взлом и/или землетрясение, — затем, исходя из этого, понять, срабатывает ли сигнализация, а затем, на этой основе, звонят ли Боб и Клэр. Байесовская сеть как будто рассказывает историю: происходит A, которое ведет к B. Одновременно с B происходит C, и вместе они вызывают D. Чтобы вычислить вероятность конкретной истории, надо просто перемножить все вероятности в разных ее цепочках.

Одна из самых потрясающих областей применения байесовских сетей — моделирование взаимной регуляции генов в клетке. Попытки открыть парные корреляции между конкретными генами и заболеваниями стоили миллиарды долларов, но дали обидно скромные результаты. Теперь это не удивляет — ведь поведение клетки складывается из сложнейших взаимодействий между генами и средой, и единичный ген имеет ограниченную прогностическую силу. Однако благодаря байесовским сетям мы можем открыть эти взаимодействия при условии, что в нашем распоряжении имеются необходимые данные, а с распространением ДНК-микрочипов данных появляется все больше.

После новаторского применения машинного обучения для фильтрации спама Дэвид Хекерман решил попробовать использовать байесовские сети в борьбе со СПИДом. ВИЧ — сильный противник. Он очень быстро мутирует, поэтому к нему сложно подобрать вакцину и надолго сдержать его с помощью лекарств. Хекерман заметил, что это те же кошки-мышки, как между спамом и фильтрами, и решил применить аналогичный прием: атаковать самое слабое звено. В случае спама слабыми звеньями были в том числе URL, которые приходится использовать для приема платежа от клиента. В случае ВИЧ ими оказались небольшие участки вирусного белка, которые не могут меняться без ущерба для вируса. Если бы получилось натренировать иммунную систему узнавать такие области и атаковать содержащие их клетки, было бы несложно разработать вакцину от СПИДа. Хекерман и его коллеги использовали байесовскую сеть, чтобы выявить эти уязвимые области, и разработали механизм доставки вакцины, которая способна научить иммунную систему атаковать их. Система работает у мышей, и в настоящее время готовятся клинические исследования.

Часто бывает, что даже после того, как все условные независимости учтены, у некоторых узлов байесовской сети все равно остается слишком много родителей. В некоторых сетях так густо от стрелок, что, если их распечатать, страница будет черной (физик Марк Ньюман называет их «абсурдограммы»). Врачу нужно одновременно диагностировать все возможные у пациента заболевания, а не только одно, а каждая болезнь — это родительский узел многих симптомов. Высокая температура может быть вызвана не только гриппом, а любым количеством состояний, и совершенно безнадежно пытаться предсказать ее вероятность при каждом возможном их сочетании. Но не все потеряно. Вместо таблицы, в которой указаны условные вероятности узла для каждого состояния родителей, можно получить более простое распределение. Самый популярный вариант — это вероятностная версия операции «логическое ИЛИ»: любая причина сама по себе может вызвать высокую температуру, но каждая причина с определенной вероятностью этого не сделает, даже если обычно ее достаточно. Хекерман и другие обучили байесовские сети, которые диагностируют таким образом сотни инфекционных заболеваний, а Google применяет гигантские сети такого рода в AdSense — системе автоматического подбора рекламы для размещения на веб-страницах. Сети связывают миллионы относящихся к контенту переменных друг с другом и с 12 миллионами слов и фраз более чем 300 миллионами стрелок, каждая из которых получена на основе сотни миллиардов отрывков текстов и поисковых запросов.

1 ... 50 51 52 ... 96
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Верховный алгоритм. Как машинное обучение изменит наш мир - Педро Домингос», после закрытия браузера.

Комментарии и отзывы (0) к книге "Верховный алгоритм. Как машинное обучение изменит наш мир - Педро Домингос"