Онлайн-Книжки » Книги » 💉 Медицина » Живи долго! Научный подход к долгой молодости и здоровью - Майкл Грегер

Читать книгу "Живи долго! Научный подход к долгой молодости и здоровью - Майкл Грегер"

45
0

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 509 510
Перейти на страницу:
Biochim Biophys Acta Gen Subj. 2018;1862(12):2527–32. https://pubmed.ncbi.nlm.nih.gov/30048742/

8329

Chini EN. Of mice and men: NAD+ boosting with niacin provides hope for mitochondrial myopathy patients. Cell Metab. 2020;31(6):1041–3. https://pubmed.ncbi.nlm.nih.gov/32492387/

8330

Conlon N, Ford D. A systems-approach to NAD+ restoration. Biochem Pharmacol. 2022;198:114946. https://pubmed.ncbi.nlm.nih.gov/35134387/

8331

McReynolds MR, Chellappa K, Baur JA. Age-related NAD+ decline. Exp Gerontol. 2020;134:110888. https://pubmed.ncbi.nlm.nih.gov/32097708/

8332

Katsyuba E, Romani M, Hofer D, Auwerx J. NAD+ homeostasis in health and disease. Nat Metab. 2020;2(1):9–31. https://pubmed.ncbi.nlm.nih.gov/32694684/

8333

Katsyuba E, Romani M, Hofer D, Auwerx J. NAD+ homeostasis in health and disease. Nat Metab. 2020;2(1):9–31. https://pubmed.ncbi.nlm.nih.gov/32694684/

8334

Elysium Health. U. S. District Court invalidates Dartmouth patents asserted by ChromaDex. Cision PR Newswire. https://www.prnewswire.com/news-releases/us-district-court-invalidates-dartmouth-patents-asserted-by-chromadex-301381257.html. Published September 21, 2021. Accessed January 28, 2023.; https://www.prnewswire.com/news-releases/us-district-court-invalidates-dartmouth-patents-asserted-by-chromadex-301381257.html

8335

Conlon N, Ford D. A systems-approach to NAD+ restoration. Biochem Pharmacol. 2022;198:114946. https://pubmed.ncbi.nlm.nih.gov/35134387/

8336

Rajman L, Chwalek K, Sinclair DA. Therapeutic potential of NAD-boosting molecules: the in vivo evidence. Cell Metab. 2018;27(3):529–47. https://pubmed.ncbi.nlm.nih.gov/29514064/

8337

Conlon N, Ford D. A systems-approach to NAD+ restoration. Biochem Pharmacol. 2022;198:114946. https://pubmed.ncbi.nlm.nih.gov/35134387/

8338

de Guia RM, Agerholm M, Nielsen TS, et al. Aerobic and resistance exercise training reverses age-dependent decline in NAD+ salvage capacity in human skeletal muscle. Physiol Rep. 2019;7(12):e14139. https://pubmed.ncbi.nlm.nih.gov/31207144/

8339

Zhou CC, Yang X, Hua X, et al. Hepatic NAD+ deficiency as a therapeutic target for non-alcoholic fatty liver disease in ageing. Br J Pharmacol. 2016;173(15):2352–68. https://pubmed.ncbi.nlm.nih.gov/27174364/

8340

Conlon N, Ford D. A systems-approach to NAD+ restoration. Biochem Pharmacol. 2022;198:114946. https://pubmed.ncbi.nlm.nih.gov/35134387/

8341

Koltai E, Szabo Z, Atalay M, et al. Exercise alters SIRT1, SIRT6, NAD and NAMPT levels in skeletal muscle of aged rats. Mech Ageing Dev. 2010;131(1):21–8. https://pubmed.ncbi.nlm.nih.gov/19913571/

8342

Liu LY, Wang F, Zhang XY, et al. Nicotinamide phosphoribosyltransferase may be involved in age-related brain diseases. PLoS One. 2012;7(10):e44933. https://pubmed.ncbi.nlm.nih.gov/23071504/

8343

Anderson RM, Bitterman KJ, Wood JG, Medvedik O, Sinclair DA. Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature. 2003;423(6936):181–5. https://pubmed.ncbi.nlm.nih.gov/12736687/

8344

Balan V, Miller GS, Kaplun L, et al. Life span extension and neuronal cell protection by Drosophila nicotinamidase. J Biol Chem. 2008;283(41):27810–9. https://pubmed.ncbi.nlm.nih.gov/18678867/

8345

Yoshida M, Satoh A, Lin JB, et al. Extracellular vesicle-contained eNAMPT delays aging and extends lifespan in mice. Cell Metab. 2019;30(2):329–42.e5. https://pubmed.ncbi.nlm.nih.gov/31204283/

8346

Brouwers B, Stephens NA, Costford SR, et al. Elevated nicotinamide phosphoribosyl transferase in skeletal muscle augments exercise performance and mitochondrial respiratory capacity following exercise training. Front Physiol. 2018;9:704. https://pubmed.ncbi.nlm.nih.gov/29942262/

8347

Costford SR, Brouwers B, Hopf ME, et al. Skeletal muscle overexpression of nicotinamide phosphoribosyl transferase in mice coupled with voluntary exercise augments exercise endurance. Mol Metab. 2018;7:1–11. https://pubmed.ncbi.nlm.nih.gov/29146412/

8348

Frederick DW, Davis JG, Dávila A Jr, et al. Increasing NAD synthesis in muscle via nicotinamide phosphoribosyltransferase is not sufficient to promote oxidative metabolism. J Biol Chem. 2015;290(3):1546–58. https://pubmed.ncbi.nlm.nih.gov/25411251/

8349

Dollerup OL, Chubanava S, Agerholm M, et al. Nicotinamide riboside does not alter mitochondrial respiration, content or morphology in skeletal muscle from obese and insulin-resistant men. J Physiol. 2020;598(4):731–54. https://pubmed.ncbi.nlm.nih.gov/31710095/

8350

Conlon N, Ford D. A systems-approach to NAD+ restoration. Biochem Pharmacol. 2022;198:114946. https://pubmed.ncbi.nlm.nih.gov/35134387/

8351

Costford SR, Bajpeyi S, Pasarica M, et al. Skeletal muscle NAMPT is induced by exercise in humans. Am J Physiol Endocrinol Metab. 2010;298(1):E117–26. https://pubmed.ncbi.nlm.nih.gov/19887595/

8352

Lamb DA, Moore JH, Mesquita PHC, et al. Resistance training increases muscle NAD+ and NADH concentrations as well as NAMPT protein levels and global sirtuin activity in middle-aged, overweight, untrained individuals. Aging (Albany NY). 2020;12(10):9447–60. https://pubmed.ncbi.nlm.nih.gov/32369778/

8353

Ruan Q, Ruan J, Zhang W, Qian F, Yu Z. Targeting NAD+ degradation: the therapeutic potential of flavonoids for Alzheimer’s disease and cognitive frailty. Pharmacol Res. 2018;128:345–58. https://pubmed.ncbi.nlm.nih.gov/28847709/

8354

Soma M, Lalam SK. The role of nicotinamide mononucleotide (NMN) in anti-aging, longevity, and its potential for treating chronic conditions. Mol Biol Rep. 2022;49(10):9737–48. https://pubmed.ncbi.nlm.nih.gov/35441939/

8355

Skidmore CJ, Davies MI, Goodwin PM, et al. The involvement of poly(ADP-ribose) polymerase in the degradation of NAD caused by ¿-radiation and N-methyl-N-nitrosourea. Eur J Biochem. 1979;101(1):135–42. https://pubmed.ncbi.nlm.nih.gov/228934/

8356

Pacher P, Szabó C. Role of poly(ADP-ribose) polymerase 1 (PARP-1) in cardiovascular diseases: the therapeutic potential of PARP inhibitors. Cardiovasc Drug Rev. 2007;25(3):235–60. https://pubmed.ncbi.nlm.nih.gov/17919258/

8357

Palmer RD, Vaccarezza M. Nicotinamide adenine dinucleotide and the sirtuins caution: pro-cancer functions. Aging Med (Milton). 2021;4(4):337–44. https://pubmed.ncbi.nlm.nih.gov/34964015/

8358

Amici SA, Young NA, Narvaez-Miranda J, et al. CD38 is robustly induced in human macrophages and monocytes in inflammatory conditions. Front Immunol. 2018;9:1593. https://pubmed.ncbi.nlm.nih.gov/30042766/

8359

Polzonetti V, Carpi FM, Micozzi D, Pucciarelli S, Vincenzetti S, Napolioni V. Population variability in CD38 activity: correlation with age and significant effect of TNF-a-308GA and CD38 184CG SNPs. Mol Genet Metab. 2012;105(3):502–7. https://pubmed.ncbi.nlm.nih.gov/22236458/

8360

Conlon N, Ford D. A systems-approach to NAD+ restoration. Biochem Pharmacol. 2022;198:114946. https://pubmed.ncbi.nlm.nih.gov/35134387/

8361

Wu S, Zhang R. CD38-expressing macrophages drive age-related NAD+ decline. Nat Metab. 2020;2(11):1186–7. https://pubmed.ncbi.nlm.nih.gov/33199923/

8362

Chini CCS, Peclat TR, Warner GM, et al. CD38 ecto-enzyme in immune cells is induced during aging and regulates

1 ... 509 510
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Живи долго! Научный подход к долгой молодости и здоровью - Майкл Грегер», после закрытия браузера.

Комментарии и отзывы (0) к книге "Живи долго! Научный подход к долгой молодости и здоровью - Майкл Грегер"