Читать книгу "Живи долго! Научный подход к долгой молодости и здоровью - Майкл Грегер"
Шрифт:
Интервал:
Закладка:
Draper CF, Vassallo I, Di Cara A, et al. A 48-hour vegan diet challenge in healthy women and men induces a BRANCH-chain amino acid related, health associated, metabolic signature. Mol Nutr Food Res. 2018;62(3):1700703. https://pubmed.ncbi.nlm.nih.gov/29087622/
8106
Kalantar-Zadeh K, Kramer HM, Fouque D. High-protein diet is bad for kidney health: unleashing the taboo. Nephrol Dial Transplant. 2020;35(1):1–4. https://pubmed.ncbi.nlm.nih.gov/31697325/
8107
Mittendorfer B, Klein S, Fontana L. A word of caution against excessive protein intake. Nat Rev Endocrinol. 2020;16(1):59–66. https://pubmed.ncbi.nlm.nih.gov/31728051/
8108
Larsen TM, Dalskov SM, van Baak M, et al. Diets with high or low protein content and glycemic index for weight-loss maintenance. N Engl J Med. 2010;363(22):2102–13. https://pubmed.ncbi.nlm.nih.gov/21105792/
8109
Brandhorst S, Longo VD. Protein quantity and source, fasting-mimicking diets, and longevity. Adv Nutr. 2019;10(Suppl_4):S340–50. https://pubmed.ncbi.nlm.nih.gov/31728501/
8110
Sifferlin A. What diet helps people live the longest? Time. 2015;185(6–7):93. https://pubmed.ncbi.nlm.nih.gov/25928954/
8111
Fontana L. The Path to Longevity: How to Reach 100 with the Health and Stamina of a 40-Year-Old. Hardie Grant Books; 2020. https://worldcat.org/title/1129687546
8112
Harden A, Young WJ. The alcoholic ferment of yeast-juice. Part II. – The coferment of yeast-juice. Proc R Soc Lond B. 1906;78(526):369–75. https://archive.org/details/philtrans05349481
8113
Reiten OK, Wilvang MA, Mitchell SJ, Hu Z, Fang EF. Preclinical and clinical evidence of NAD+ precursors in health, disease, and ageing. Mech Ageing Dev. 2021;199:111567. https://pubmed.ncbi.nlm.nih.gov/34517020/
8114
Strømland Ø, Diab J, Ferrario E, Sverkeli LJ, Ziegler M. The balance between NAD+ biosynthesis and consumption in ageing. Mech Ageing Dev. 2021;199:111569. https://pubmed.ncbi.nlm.nih.gov/34509469/
8115
Rajman L, Chwalek K, Sinclair DA. Therapeutic potential of NAD-boosting molecules: the in vivo evidence. Cell Metab. 2018;27(3):529–47. https://pubmed.ncbi.nlm.nih.gov/29514064/
8116
Katsyuba E, Romani M, Hofer D, Auwerx J. NAD+ homeostasis in health and disease. Nat Metab. 2020;2(1):9–31. https://pubmed.ncbi.nlm.nih.gov/32694684/
8117
Zapata-Pérez R, Wanders RJA, van Karnebeek CDM, Houtkooper RH. NAD+ homeostasis in human health and disease. EMBO Mol Med. 2021;13(7):e13943. https://pubmed.ncbi.nlm.nih.gov/34041853/
8118
Giblin W, Skinner ME, Lombard DB. Sirtuins: guardians of mammalian healthspan. Trends Genet. 2014;30(7):271–86. https://pubmed.ncbi.nlm.nih.gov/24877878/
8119
Rajman L, Chwalek K, Sinclair DA. Therapeutic potential of NAD-boosting molecules: the in vivo evidence. Cell Metab. 2018;27(3):529–47. https://pubmed.ncbi.nlm.nih.gov/29514064/
8120
Liu L, Su X, Quinn WJ, et al. Quantitative analysis of NAD synthesis-breakdown fluxes. Cell Metab. 2018;27(5):1067–80.e5. https://pubmed.ncbi.nlm.nih.gov/29685734/
8121
Ziegler M, Nikiforov AA. NAD on the rise again. Nat Metab. 2020;2(4):291–2. https://pubmed.ncbi.nlm.nih.gov/32694607/
8122
Zapata-Pérez R, Wanders RJA, van Karnebeek CDM, Houtkooper RH. NAD+ homeostasis in human health and disease. EMBO Mol Med. 2021;13(7):e13943. https://pubmed.ncbi.nlm.nih.gov/34041853/
8123
Jacobson MK, Jacobson EL. Vitamin B3 in health and disease: toward the second century of discovery. Methods Mol Biol. 2018;1813:3–8. https://pubmed.ncbi.nlm.nih.gov/30097857/
8124
Chini CCS, Tarragó MG, Chini EN. NAD and the aging process: role in life, death and everything in between. Mol Cell Endocrinol. 2017;455:62–74. https://pubmed.ncbi.nlm.nih.gov/27825999/
8125
Bogan KL, Brenner C. Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition. Annu Rev Nutr. 2008;28:115–30. https://pubmed.ncbi.nlm.nih.gov/18429699/
8126
Kirkland JB, Meyer-Ficca ML. Niacin. In: Advances in Food and Nutrition Research. Elsevier;2018;83:83–149. https://pubmed.ncbi.nlm.nih.gov/29477227/
8127
Yang Y, Sauve AA. NAD+ metabolism: bioenergetics, signaling and manipulation for therapy. Biochim Biophys Acta. 2016;1864(12):1787–800. https://pubmed.ncbi.nlm.nih.gov/27374990/
8128
Rajman L, Chwalek K, Sinclair DA. Therapeutic potential of NAD-boosting molecules: the in vivo evidence. Cell Metab. 2018;27(3):529–47. https://pubmed.ncbi.nlm.nih.gov/29514064/
8129
Soma M, Lalam SK. The role of nicotinamide mononucleotide (NMN) in anti-aging, longevity, and its potential for treating chronic conditions. Mol Biol Rep. 2022;49(10):9737–48. https://pubmed.ncbi.nlm.nih.gov/35441939/
8130
Rajman L, Chwalek K, Sinclair DA. Therapeutic potential of NAD-boosting molecules: the in vivo evidence. Cell Metab. 2018;27(3):529–47. https://pubmed.ncbi.nlm.nih.gov/29514064/
8131
She J, Sheng R, Qin ZH. Pharmacology and potential implications of nicotinamide adenine dinucleotide precursors. Aging Dis. 2021;12(8):1879–97. https://pubmed.ncbi.nlm.nih.gov/34881075/
8132
Pflanzer LR. A startup that’s developed an anti-aging supplement just raised $20 million. Business Insider. https://www.businessinsider.com/elysium-health-raises-20-million-and-presents-clinical-data-2016–12. Published December 7, 2016. Accessed January 10, 2023.; https://www.businessinsider.com/elysium-health-raises-20-million-and-presents-clinical-data-2016-12
8133
Goldstein J. Harvard researcher tied to Shaklee “anti-aging tonic” Vivix. Wall Street Journal. https://www.wsj.com/articles/BL-HEB-3860. Published December 26, 2008. Accessed January 10, 2023.; https://www.wsj.com/articles/BL-HEB-3860
8134
Peluso A, Damgaard MV, Mori MAS, Treebak JT. Age-dependent decline of NAD+—universal truth or confounded consensus? Nutrients. 2021;14(1):101. https://pubmed.ncbi.nlm.nih.gov/35010977/
8135
McReynolds MR, Chellappa K, Chiles E, et al. NAD+ flux is maintained in aged mice despite lower tissue concentrations. Cell Syst. 2021;12(12):1160–72.e4. https://pubmed.ncbi.nlm.nih.gov/34559996/
8136
Peluso A, Damgaard MV, Mori MAS, Treebak JT. Age-dependent decline of NAD+—universal truth or confounded consensus? Nutrients. 2021;14(1):101. https://pubmed.ncbi.nlm.nih.gov/35010977/
8137
Rajman L, Chwalek K, Sinclair DA. Therapeutic potential of NAD-boosting molecules: the in vivo evidence. Cell Metab. 2018;27(3):529–47. https://pubmed.ncbi.nlm.nih.gov/29514064/
8138
Mills KF, Yoshida S, Stein LR, et al. Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice. Cell Metab. 2016;24(6):795–806. https://pubmed.ncbi.nlm.nih.gov/28068222/
8139
Cerutti R, Pirinen E, Lamperti C, et al. NAD+-dependent activation of Sirt1 corrects the phenotype in a mouse model of mitochondrial disease. Cell Metab. 2014;19(6):1042–9. https://pubmed.ncbi.nlm.nih.gov/24814483/
8140
Fang EF, Lautrup S, Hou Y, et al. NAD+ in aging: molecular mechanisms and translational implications. Trends Mol Med. 2017;23(10):899–916. https://pubmed.ncbi.nlm.nih.gov/28899755/
Внимание!
Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Живи долго! Научный подход к долгой молодости и здоровью - Майкл Грегер», после закрытия браузера.