Онлайн-Книжки » Книги » 👨‍👩‍👧‍👦 Домашняя » Онтогенез. От клетки до человека - Джейми Дейвис

Читать книгу "Онтогенез. От клетки до человека - Джейми Дейвис"

243
0

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 4 5 6 ... 85
Перейти на страницу:

Первый шаг к усложнению – переход от одной клетки к множеству. Это обусловлено необходимостью одновременного протекания большого количества различных процессов. Например, сейчас вы дышите, перевариваете пищу и выводите из организма вредные вещества; ваши волосы растут, кожа обновляется, кровь фильтруется, иммунная система борется с болезнетворными бактериями, температура тела регулируется; вы слушаете, читаете и думаете, а теперь, когда вы дочитали это предложение до конца, возможно, также прислушиваетесь к своему организму. Эти процессы, как и многие другие, приводятся в действие с помощью особых белков и биохимических механизмов. Многие из этих процессов никак не могут протекать в одном и том же месте. Например, представим, что в одном и том же месте организма матери вырабатывается молоко для ребенка и тут же переваривается то молоко, которое она только что выпила с чаем. Есть и другие примеры процессов, несовместимых по более сложным причинам: из-за особенностей строения белков или функционирования генов.

Сложные организмы справляются с этой проблемой благодаря компартментализации – принципу разделения процессов в пространстве. Тело состоит из органов, имеющих определенные функции, органы – из специализированных тканей, а ткани – из разных типов клеток. Однако внутри клетки большая часть молекул постоянно находится в движении, из-за чего трудно достичь одновременного выполнения многих операций. Компартментализация существует и на уровне клетки. В главе 8, посвященной перемещению клеток эмбриона и изменению их взаимного расположения, мы обсудим, как разные части клетки могут выполнять несколько разные функции. Однако «многозадачность» клетки имеет свои пределы. Поэтому мы будем считать клетку базовой единицей, которая одновременно выполняет лишь одно-два дела. Именно поэтому многообразие типов клеток является необходимым шагом к созданию сложного организма.

Механизмы, за счет которых одна клетка превращается в две, а потом и во множество клеток, не только принципиально важны для эмбрионального развития, но и ярко демонстрируют возможности самоорганизации. Простые маленькие молекулы могут самоорганизовываться в крайне сложные структуры, имеющие гораздо больший пространственный масштаб, чем сами молекулы, причем без какого бы то ни было предварительного плана. Это краеугольный камень, лежащий в основе понимания развития эмбриона. Поэтому в этой главе мы подробно остановимся на механизмах деления клетки, а в дальнейшем будем принимать их как данность.

Оплодотворенная яйцеклетка, с которой начинается развитие человека, необычно велика. Она достигает десятой доли миллиметра в диаметре и видна даже невооруженным глазом. Большинство клеток организма намного меньше: примерно сотая доля миллиметра в диаметре и тысячная доля объема яйцеклетки. Это означает, что оплодотворенная яйцеклетка может превратиться в многоклеточный эмбрион просто поделившись на две, затем на четыре, на восемь и так далее, без перерывов на рост. Такой тип деления клетки – дробление – очень удобен для эмбриона, так как позволяет отложить проблему питания, обеспечивающего энергию для роста, на потом, а именно на этап, когда эмбрион уже станет многоклеточным и сможет выделить для переработки пищи специализированные части тела.

Если расти не нужно, процесс деления сводится к распределению молекул (например, белков) поровну между дочерними клетками. Суть деления при неизменном объеме заключается в сохранении концентрации белков и питательных веществ. Ярким исключением из этого правила является молекула ДНК: в исходной клетке сорок шесть хромосом (двадцать три от матери и двадцать три от отца), и каждая новая клетка должна содержать такое же их число. Поэтому хромосомы должны копироваться (реплицироваться) перед каждым делением клетки. Более того, должны существовать специальные системы, гарантирующие «честное» распределение реплицированных хромосом по дочерним клеткам – каждая из них должна получить не сорок шесть любых хромосом, а по одной копии каждой хромосомы от отца и по одной – от матери. Система, которая обеспечивает эту нелегкую задачу, является одной из основных систем клеток животных и растений и существует уже около 2,5 млрд лет. И всего пару миллионов лет назад появились существа, которые в принципе способны понять, как она работает.

Копирование ДНК – самая простая и самая древняя часть процесса, ей уже как минимум 3,5 млрд лет. Она основана на том, что молекулы ДНК существуют в виде пары нуклеотидных цепей (иногда их называют «нитями»). Аденину на одной цепи всегда соответствует тимин на другой цепи, а цитозину – гуанин. Это строгое правило, связанное с химической структурой нуклеотидов, означает, что каждая цепочка содержит всю необходимую информацию о последовательности соседней цепи. Репликация ДНК начинается с того, что ферментный комплекс отделяет две материнских цепи друг от друга. Затем он собирает новую цепь для каждой из них, соединяя нуклеотиды в порядке исходной цепи. Каждая новая цепь соединяется со старой, которая служила для нее матрицей. В результате получаются две молекулы ДНК вместо одной. То есть происходит репликация ДНК. Белки, в которые завернута ДНК, добавляются сразу же после копирования.

После репликации сорок шесть хромосом одноклеточного зародыша должны быть распределены так, чтобы каждой дочерней клетке непременно досталось по одной копии каждой материнской хромосомы и каждой отцовской хромосомы. Этот процесс можно разбить на несколько этапов: 1) определение центров двух дочерних клеток; 2) выравнивание всех скопированных хромосом между этими центрами; 3) «растаскивание» копий – по одному экземпляру каждой пары отходит каждой дочерней клетке; 4) отделение дочерних клеток друг от друга. Каждый из этих этапов включает в себя координированные действия в пространственном масштабе, значительно превышающем размеры вовлеченных в них молекул. При этом весь процесс должен протекать без отклонений, несмотря на то что точное расположение основных компонентов (хромосом, например) будет постоянно меняться. Поэтому все эти этапы в значительной степени полагаются на адаптивную самоорганизацию и могут служить отличным примером для иллюстрации этого принципа.

Первая проблема заключается в выявлении центров новых дочерних клеток. Проще всего понять, как определяется центр в типичной взрослой клетке, которая не собирается делиться, а просто находится в состоянии покоя. На первый взгляд проблема кажется простой. Однако при более детальном рассмотрении все усложняется. Клетки вообще не имеют четкой формы: она зависит от их окружения. Это исключает любой заранее заготовленный план. Диаметр типичной клетки человека – примерно одна сотая миллиметра – кажется нам небольшим, ведь мы состоим из миллионов клеток. Однако это в тысячу раз больше, чем длина обычной молекулы белка. Тем не менее комплексы белков каким-то образом находят центр клетки. Это все равно что запустить в Альберт-Холл[4] глухих людей с завязанными глазами и попросить их найти его середину.

Клетка нашла крайне остроумный способ решения этой проблемы. Он хорошо иллюстрирует, насколько важны могут быть тривиальные детали биохимических процессов для функционирования клетки. «Звездой» всего действа является белок тубулин, молекулы которого связываются друг с другом и образуют длинные структуры – микротрубочки. Одна из особенностей сборки молекул тубулина заключается в том, что объединение нескольких молекул тубулина для образования новой микротрубочки – событие маловероятное, а процесс присоединения молекулы тубулина к уже существующей микротрубочке, то есть ее удлинение, протекает относительно легко. Поэтому микротрубочки, как правило, не образуются спонтанно, но после того, как они образовались, они способны к спонтанному росту.

1 ... 4 5 6 ... 85
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Онтогенез. От клетки до человека - Джейми Дейвис», после закрытия браузера.

Комментарии и отзывы (0) к книге "Онтогенез. От клетки до человека - Джейми Дейвис"