Читать книгу "Вирусы. Драйверы эволюции. Друзья или враги? - Майкл Кордингли"
Шрифт:
Интервал:
Закладка:
Несмотря на то что наиболее интенсивно в настоящее время исследуют океанический виром, многие ученые изучают виром других экологических ниш. Проводятся исследования метагеномов галофильных или термофильных бактерий и простейших, обитающих в соляных озерах и горячих источниках. Гиполитические микробные сообщества на нижней поверхности прозрачных камней в Намибийской пустыне, отличающейся крайней сухостью, дают такую возможность (Adriaenssens et al., 2014). Вирусы этих собирательных экосистем численно превосходят все остальные компоненты виросферы. Преимущественно они поражают бактерии и простейших, но делают это множеством способов. Для инфицирования эти вирусы используют разнообразные стратегии, у которых есть только одно общее: единственная цель такого инфицирования – репликация и передача генетической информации. Их геномы, кодирующие всю необходимую генетическую информацию, могут состоять из РНК или ДНК и принимать множество разных форм: одноцепочечную или двухцепочечную, линейную или кольцевую, или даже сегментированную. В некоторых редких случаях вирусы способны делиться генетической информацией (когда генетической информации в каком-то геноме недостаточно, и недостающие гены берутся из генома вируса-помощника). Вирусы могут быстро эволюционировать. Это становится возможным благодаря ряду факторов, включая огромную сложность вирусных популяций и короткое время генерации, что приводит к быстро протекающим циклам репликации. Генетическая сложность, о которой я здесь говорю, служит отражением не только большого числа индивидуальных вирусов, но и большого разнообразия в содержании генетической информации. Другим важным катализатором скорости эволюционного развития вирусов является неограниченный обмен информацией и эффективность, с какой вирусы ею обмениваются, как друг с другом, так и с клеткой-хозяином. И, наконец, склонность к ошибкам в репликации, характерная для репликации вирусных нуклеиновых кислот, тоже приводит к генетическому разнообразию в популяции. Вирусы оседлали быстрые эволюционные потоки, подстегивая собственную эволюцию и адаптивную эволюцию своих хозяев. Вирусный метагеном – настоящий шведский стол полезной генетической функциональности. Этот стол позволяет успешно эволюционировать вирусному геному, но если мутации усваиваются хозяином, то они могут послужить и на благо его выживаемости в изменяющемся и враждебном мире.
Ученые подсчитали, что каждый второй фаг из 1025 частиц, начинающих инфицирование клетки-хозяина, распадается на составные части до того, как генетическая программа направит процесс в сторону синтеза копий исходной вирусной частицы. Физику этот процесс сразу напомнит о втором начале термодинамики, учитывая общую массу фагов, а также высвобождение и расход энергии вслед за началом инфицирования. Расщепление организованной структуры фага на неупорядоченные частицы приводит к выделению энергии и увеличению беспорядка. Воссоздание большего числа вирусных частиц требует более значительного притока энергии, которую вирусам приходится извлекать из работы энергетических систем клетки-хозяина. Биолог, с другой стороны, задумается о вовлеченной в процесс биомассе и о воздействии циклов инфицирования на различные экосистемы, что влияет на поток и доступность питательных веществ в пищевой цепи. Генетик, исследующий систему, отметит, что при одновременной репликации 1021 фагов будут возникать практически бесчисленные мутанты. Эти варианты копий возникают, когда геномы фагов копируются с ошибками и когда фрагменты генетической информации теряются или обмениваются с фрагментами наследственной информации, одновременно вносимой в клетку другими фагами. Иногда генетическая информация клетки-хозяина добавляется в геном фага, а затем становится его неотъемлемой частью, служащей целям вируса.
Эта «комбинаторная биология» практикуется в природе в очень широких масштабах. Начало ей было положено три миллиарда лет назад; она является плотью и кровью естественного отбора, который основан на невообразимом разнообразии генетической информации в вирусном метагеноме. Эта комбинаторная биология создала и до сих пор поддерживает мир вирусов, который использует разнообразные стратегии репликации во взаимодействии с клетками-хозяевами и популяциями таких клеток. Почти бесконечное число генетических вариантов в виросфере может быть превращено в «прототипы», и по проторенной таким образом дорожке вирусы могут занимать и обживать завоеванное «эволюционное пространство». Вирусы можно уподобить игрокам в лото с неисчерпаемыми ресурсами; эти игроки могут покупать любые билеты; если в наборе существует выигрышный билет, то они непременно его получат. Все, что требуется, – это наличие выигрышного билета, который становится прототипом, дающим эволюционные преимущества. Здесь кроется невероятная способность вирусов быстро адаптироваться к изменениям в клетках-хозяевах и успех, который сопутствует вирусам во всех их попытках занять любую экологическую нишу.
Генетическая информация, закодированная в геномах фагов, составляет большую часть вирусной генетической информации в виросфере. Если мы учтем все гены, идентифицированные к настоящему времени во всех биологических объектах, то фаговые гены составят подавляющее большинство. В 2003 году ученые использовали вычислительный алгоритм Chao1 для того, чтобы собрать в банке генов все ДНК-последовательности всех идентифицированных фагов. Выводы оказались просто поразительными. Ученые смогли высчитать, что предстоит открыть еще около двух миллиардов фаговых генов (Rohwer, 2003). Если учесть число фаговых генов и их нуклеотидных последовательностей, находящихся в генном банке в настоящее время, то это означает, что предстоит обнаружить 99,9998 % всех фаговых генов (Rohwer, 2003). Действительно, во многих океанографических наблюдениях, касающихся метагенома морских фагов, большой процент (около 75 %) собранных последовательностей отсутствует в любой из существующих баз данных и не может быть идентифицирован – эти последовательности ДНК были названы «темной материей» (Breitbart et al., 2002; Pedulla et al., 2003). Никто не знает, какие генные сокровища будут найдены в этом море генетической информации, но ясно одно: эта информация непременно будет использована в процессе эволюции. Эти новые гены могут способствовать возникновению новых штаммов фагов или сообщить вирусам дополнительную вирулентность. Возможно, и люди смогут извлечь из этого какую-то пользу, так как новые гены могут помочь в создании новых биотехнологических инструментов и новых лекарств.
Вирусы являются облигатными паразитами, которые реплицируются только внутри живых клеток организма-хозяина. Естественный отбор может влиять только на исход инфекционного поражения и на успех размножения вируса. Отношение вируса с клеткой-хозяином – это двустороннее отношение, и естественный отбор точно так же работает и на организме хозяина. Выживание клетки-хозяина является мерой успешности клеточного генома. Эта симметрия влияния естественного отбора на генетическую информацию как вируса, так и клетки-хозяина создает феномен, посредством которого вирусы и клетки вырабатывают в конце концов способы взаимоприемлемой активности. Слово «взаимоприемлемый» в данном контексте выглядит не вполне уместно, потому что геномы обоих организмов в этой ситуации вступают в конфликт, и каждый из них преследует свои собственные эгоистические цели для сохранения собственной репликации. Обычно этот процесс называют «гонкой вооружений» или «эффектом Черной Королевы» между жертвой и хищником, хозяином и вторгнувшимся в него врагом (Van Valen, 1973; Dawkins, Krebs, 1979). Отсылка к Льюису Кэрроллу объясняется словами Королевы, сказанными Алисе: «Смотри, тебе приходится бежать изо всех сил, чтобы оставаться на месте» (Carroll, 1871). И вирус, и хозяин должны непрерывно развиваться; каждый раз, когда у одного из партнеров появляется новый генетический вариант, он приобретает преимущество, разрушительное для другого партнера, и второй партнер должен сильно постараться, чтобы восстановить равновесие, избрав адекватную контрмеру. Отпарировать удар противника и нанести ему свой. Так возникают чрезвычайно сложные отношения между вирусом и хозяином. Эволюция вирусов, таким образом, неотделима от эволюции их хозяев. При том, что вирусов так много и что они вездесущи в природе, при том, что вирусный метагеном содержит массу генетической информации, движущей эволюцию, мы можем представить себе то огромное влияние, какое вирусы оказывают на экосистемы.
Внимание!
Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Вирусы. Драйверы эволюции. Друзья или враги? - Майкл Кордингли», после закрытия браузера.