Онлайн-Книжки » Книги » 👨‍👩‍👧‍👦 Домашняя » Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике - Джон Дербишир

Читать книгу "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике - Джон Дербишир"

230
0

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 3 4 5 ... 121
Перейти на страницу:

Рисунок 1.6.

Я был студентом, когда узнал про это. Дело было в летние каникулы, и я занимался подготовкой к следующему семестру, пытаясь несколько опередить программу. Свой вклад в оплату обучения я вносил, нанимаясь на время каникул рабочим на стройки — в Англии в те времена профсоюзы не сильно контролировали этот сектор. На следующий день после того, как я узнал про фокус с картами, мне предстояло в одиночку прибраться во внутренней части строящегося здания, где пачками хранились сотни больших квадратных потолочных панелей. Часа два я с забавлялся со стопкой из 52 панелей, пытаясь добиться нависания в две с четвертью панели. Проходивший мимо прораб застал меня глубоко погруженным в созерцание гигантской колышущейся башни, составленной из потолочных панелей, и он, я думаю, утвердился в своих худших подозрениях относительно целесообразности найма студентов.


II.

Есть одна вещь, которую очень любят делать математики и которая оказывается очень плодотворной, — это экстраполировать, т.е. брать конкретную задачу и распространять ее выводы на более широкую область.

В нашей конкретной задаче у нас было 52 карты. Оказалось, что полное нависание составило более чем две с четвертью карты.

Но почему 52 карты? А если бы было больше? Сотня? Миллион? Триллион? А предположим, что у нас имелся бы неограниченный запас карт — какого максимального нависания мы смогли бы тогда добиться?

Сначала взглянем на нашу постепенно растущую формулу. При 52 картах полное нависание составило

1/2 + 1/4 + 1/6 + 1/8 + 1/10 + 1/12 + 1/14 + 1/16 + … + 1/102.

Поскольку все знаменатели здесь четные, можно вынести одну вторую за скобки и переписать в виде

1/2∙(1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/7 + 1/8 + … + 1/51).

Если бы у нас была сотня карт, то полное нависание составляло бы

1/2∙(1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/7 + 1/8 + … + 1/99).

Имея в распоряжении триллион карт, мы добились бы нависания величиной в

1/2∙(1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/7 + 1/8 + … + 1/999999999999).

Чтобы посчитать такое, требуется проделать немало арифметических действий, но у математиков есть способы спрямлять подобные вычисления, и я могу твердо заверить вас, что полное нависание в случае сотни карт будет лишь чуточку меньше, чем 2,58868875882, а для триллиона карт — на самую толику меньше, чем 14,10411839041479.

Полученные числа удивительны вдвойне. Во-первых, тем, что вообще удается добиться нависания в 14 с лишним карточных длин, пусть даже для этого понадобится триллион карт. Четырнадцать карточных длин — это более четырех футов, если брать стандартные игральные карты. А во-вторых, если об этом подумать, тем, что числа оказываются именно такими, а не большими. При переходе от 52 к 100 картам мы заработали дополнительное нависание лишь в одну треть длины карты (даже чуть-чуть меньше, чем в одну треть). А затем переход к триллиону — а колода в триллион стандартных игральных карт будет иметь такую толщину, что покроет большую часть расстояния до Луны, — принес нам всего лишь одиннадцать с половиной карточных длин.

Ну а если бы число карт у нас было неограниченным? Какого максимального нависания мы могли бы достичь? Замечательный ответ на этот вопрос состоит в том, что максимального нависания просто нет. Если в запасе имеется достаточное число карт, можно сделать нависание сколь угодно большим. Желаете получить нависание в 100 карточных длин? Пожалуйста, возьмите что-то около 405 709 150 012 598 триллионов триллионов триллионов триллионов триллионов триллионов карт — колоду, высота которой намного превысит размеры известной нам части Вселенной. А можно сделать и большее нависание, и еще большее — настолько большое, насколько захотите, если только у вас есть желание иметь дело с невообразимо большим числом карт. Нависание в миллион карт? Пожалуйста, но, правда, количество необходимых для этого карт будет таким большим, что только для записи этого числа понадобится нормального размера книга — в этом числе будет 868 589 цифр.


III.

Теперь нам предстоит сосредоточить свое внимание на выражении в скобках, а именно

1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/7 + ….

Математики говорят, что это — ряд; ряд означает неограниченно продолжающееся суммирование членов, каждый из которых задается некоторым общим законом. В нашем случае члены ряда 1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, … — это обратные величины к обычным натуральным числам 1, 2, 3, 4, 5, 6, 7, ….

Ряд 1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/7 + … играет в математике достаточно важную роль, чтобы иметь собственное название. Он называется гармоническим рядом.

Подведем промежуточный итог. Складывая достаточно большое число членов гармонического ряда, можно получить сколь угодно большой результат. У этой суммы нет предела.

Грубый, но распространенный и доходчивый способ выразить то же самое — это сказать, что гармонический ряд суммируется к бесконечности:

1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/7 + … = ∞.

Хорошо воспитанных математиков учат морщиться при виде таких выражений; но я думаю, что с ними вполне можно иметь дело, если знать опасности, которые вас тут подстерегают. Леонард Эйлер, один из величайших математиков всех времен, использовал подобные выражения постоянно и весьма плодотворно. Но все же правильный, профессиональный математический термин, описывающий то, что здесь происходит, звучит так: гармонический ряд расходится.

1 ... 3 4 5 ... 121
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике - Джон Дербишир», после закрытия браузера.

Комментарии и отзывы (0) к книге "Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике - Джон Дербишир"