Онлайн-Книжки » Книги » 🤯 Психология » Магия чисел. Моментальные вычисления в уме и другие математические фокусы - Майкл Шермер

Читать книгу "Магия чисел. Моментальные вычисления в уме и другие математические фокусы - Майкл Шермер"

294
0

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 3 4 5 ... 56
Перейти на страницу:


МГНОВЕННОЕ УМНОЖЕНИЕ


Давайте начнем с одного из моих любимых трюков: как умножать в уме любое двузначное число на 11. Это очень легко, если вы знаете секрет. Представьте следующую задачу:

32 х 11

Для ее решения нужно просто сложить цифры 3 + 2 = 5, а затем поместить пятерку между двойкой и тройкой.

Вот и наше решение: 352

Что может быть легче? Теперь попробуйте

53 х 11

Поскольку 5 + 3 = 8, ответ достаточно прост:

583

Еще пример. Не подглядывая и не записывая, скажите, чему равно:

81 х 11?

У вас получилось 891? Поздравляю!

Но пока не слишком воодушевляйтесь: я показал лишь половину того, что необходимо знать. Допустим, задача такая:

85 х 11

Несмотря на то что 8 + 5 = 13, ответ НЕ 8135!

Как и прежде цифра 3 ставится между цифрами 8 и 5, но 1 добавляется к цифре 8 для получения правильного ответа 935.

Представляйте задачу следующим образом:

1

835

¯¯¯

935

Вот еще пример. Попробуйте перемножить 57 х 11.

Так как 5 + 7 = 12, ответ:

1

527

¯¯¯

627

Теперь ваша очередь. Как можно быстрее, подсчитайте, сколько будет 77 х 11?

Если вы получили ответ 847, можете себе поаплодировать.

Вы на пути к превращению в матемага.

Мне известно по опыту, что если вы скажете другу или учителю, что способны в уме умножить любое двузначное число на 11, просьба умножить 99 на 11 не заставит себя долго ждать. Поэтому решим эту задачку прямо сейчас, чтобы вы были готовы.

Так как 9 + 9 = 18, ответ таков:

1

989

¯¯¯

1089

Хорошо попрактикуйте свой новый навык какое-то время, а затем проведите шоу перед друзьями. Вы будете удивлены реакцией, которую вызовет ваше умение (раскрывать или нет свои секреты — решайте сами).

Итак, к этому моменту у вас, должно быть, появилось несколько вопросов, скажем:

Можно ли использовать этот метод для умножения трехзначных (или более «значных») чисел на 11?

Безусловно. Например, для задачи 314 х 11 ответ все еще будет начинаться с 3 и заканчиваться на 4. Так как 3 + 1 = 4 и 1 + 4 = 5, ответ будет равен 3454. Но мы пока отложим задачи посерьезнее на потом.

Вероятно, вы уже спрашиваете себя:

Конечно, замечательно, что таким способом можно умножать на 11. Но как насчет других чисел? Как умножить числа на 12, 13 или 36?

Мой ответ: «Терпение!» Об этом рассказывается дальше.

В главах 2, 3, 6 и 8 вы изучите методы умножения, позволяющие перемножать любые два числа. При этом вам не придется запоминать специальные правила для каждого случая. Несколько методов — вот и все, что вам понадобится для быстрого умножения чисел в уме.


ВОЗВЕДЕНИЕ ВО ВТОРУЮ (В КВАДРАТ) И БÓЛЬШИЕ СТЕПЕНИ


Вот еще один трюк.

Как вы, наверное, знаете, квадрат числа — это заданное число, умноженное само на себя. Например, квадратом 7 будет 7 х 7, то есть 49. Позже я научу вас простому способу, который позволит без труда вычислять квадрат любого двузначного и трехзначного (и состоящего из большего количества знаков) числа.

Этот метод особенно легко применять, если число заканчивается на 5. Поэтому опробуем его прямо сейчас.

1. Ответ должен начинаться с результата умножения первой цифры возводимого в квадрат числа на цифру, большую на единицу, чем первая цифра.

2. Ответ заканчивается на 25.

Например, чтобы возвести в квадрат число 35, мы просто умножаем первую цифру (3) на 4, то есть на единицу бóльшую цифру, после чего добавляем 25. Так как 3 х 4 = 12, следовательно, ответ — 1225. Таким образом, 35 х 35 = 1225. Проделанные шаги можно представить следующим образом:



Как насчет возведения в квадрат числа 85? Так как 8 х 9 = 72, мы мгновенно получаем ответ: 85 х 85 = 7225.



Можно применить похожий прием при умножении двузначных чисел, начинающихся с одинаковых первых цифр, сумма вторых цифр которых равняется 10. Ответ будет состоять из числа, полученного с помощью вышеописанного метода (первая цифра умножается на цифру, на единицу бóльшую), и произведения вторых цифр чисел, участвующих в умножении. Например, попробуем умножить 83 на 87. (Оба числа начинаются на 8, а сумма последних цифр 3 + 7 = 10.)

Так как 8 х 9 = 72 и 3 х 7 = 21, ответ — 7221.



Подобным образом получаем из 84 х 86 = 7224.

Теперь ваша очередь. Попробуйте вычислить 26 х 24.

С чего начинается ответ? С 2 х 3 = 6. Чем заканчивается? 6 х 4 = 24. Значит, 26 х 24 = 624.

Помните, что использовать этот метод можно, только если первые цифры чисел одинаковы, а последние дают в сумме 10.

Итак, мы можем применить этот метод, чтобы мгновенно вычислить:



Вы можете спросить: Что делать, если последние цифры не дают в сумме 10? Мы все равно можем использовать этот прием, чтобы умножить 22 на 23?

Пока еще нет. Но в главе 8 я покажу вам простой способ решения таких задач с применением метода «совместной близости» (для вычисления 22 х 23 нужно умножить 20 х 25, прибавить 2 х 3 и получите 500 + 6 = 506; но это я забегаю наперед!). Вы не только научитесь использовать данные методы, но и поймете принципы их работы.

1 ... 3 4 5 ... 56
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Магия чисел. Моментальные вычисления в уме и другие математические фокусы - Майкл Шермер», после закрытия браузера.

Комментарии и отзывы (0) к книге "Магия чисел. Моментальные вычисления в уме и другие математические фокусы - Майкл Шермер"