Онлайн-Книжки » Книги » 🤯 Психология » Big Data простым языком - Алексей Благирев

Читать книгу "Big Data простым языком - Алексей Благирев"

221
0

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 38 39 40 ... 42
Перейти на страницу:

«Взгляд на то, что такое Digital Marketing Hub, зависит от перспективы, с которой смотрит основной потребитель, входящий в одну из четырех групп. Каждый из четырех потребителей видит конечную цель исключительно в своей плоскости, но при этом инфраструктура может быть общей и совмещать миллиарды новых данных о пользователях, устройствах и используемом контенте».

Экосистемы

Экосистема представляет собой набор услуг, который объединяет пользовательский опыт.

Потребительские экосистемы, как правило, сосредоточены на таких потребностях как путешествия, здравоохранение и жилье. Системы B2B обычно вращаются вокруг определенного лица, принимающего решения, например, маркетинга и продаж, операций, закупок или профессионалов в области финансов.

В чем преимущества экосистем?

– Они действуют как шлюзы и снижают затраты клиентов на переключение на связанные услуги. Например, мессенджеры WeChat и Line позволяют пользователям совершать покупки, регистрироваться на мероприятиях, читать новости и общаться с врачами через один интерфейс. Пользователям не нужно переключаться между порталами, управлять множеством паролей и вообще помнить про несколько сервисов.

– Они используют сетевые эффекты. Google Nest стал основой для экосистемы смарт-домашних продуктов и, например, присылает своим клиентам ежемесячную карточку отчета по использованию энергии и сравнивает этот расход с показателями соседей (и это дает контекст). Одновременно с этим компания передает агрегированные данные поставщиков коммунальных услуг. Эта информация может помочь им оптимизировать свои процессы.

– Они объединяют данные по ряду услуг. Одна медицинская компания извлекает данные высокой точности из системы здравоохранения и применяет ее к жизни пациентов для улучшения здоровья человека. Другой пример: сервис Dash берет данные по отзывам и сервисным компаниям у автопроизводителей, а потом делает персонифицированные рассылки своим клиентам.

Консалтинговая компания McKinsey прогнозирует появление двенадцати глобальных экосистем, относящихся к различным сферам бизнеса, к 2025 году.

Глава 8
А что дальше? Проблемы и тренды

В 2015 году исследовательская компания Gartner убрала Big Data со своей «кривой хайпа». Но до сих пор вокруг этого термина существует какая-то лихорадочная активность. По-прежнему идет речь о Big Data-трансформации, но далеко не всегда понятно, что это такое, и какую конкретно пользу оно может принести бизнесу. Сам по себе переход на новые технологии вряд ли может привести к увеличению прибыли или сокращению накладных расходов.

Проблемы с Big Data сегодня

Хотя технологии Big Data сейчас уже применяются промышленно, бо́льшая часть проектов в этой области не имеет успеха. Почему?

Мы думаем, что понимаем Big Data

Проекты, связанные с Big Data-аналитикой, часто воспринимаются всеми (менеджментом и самими разработчиками) как традиционные IT-проекты с фиксированным скоупом (объемом работы).

В реальности же это, скорее, RnD-проект (Research and development или исследование и разработка). И ключевую роль здесь играет именно исследовательская часть. На самом деле, не определены ни конечный результат, ни время, за которое будет получено хоть что-то.

Big Data аналитика – это постоянное исследование, в ходе которого скорее появятся внезапные полезные инсайты, чем стабильные и быстрые бизнес-результаты (конечно, если речь идет о новом проекте). Однако то, как раскрывается ценность этих инсайтов, зависит больше от знания предметной области, чем от количества данных, математической или технической сложности решения. И здесь как никогда справедлива фраза «отрицательный результат – тоже результат», только надо уметь это увидеть.

Еще одна проблема – недостаток специалистов. Покупка инструментов и применение agile-методологии в полной мере ее не решает. Уровень опыта и экспертиза также играют роль в успешном завершении исследовательских проектов Big Data.

Как рассчитать финансовый эффект?

Большая гибкость в отношении сроков и результатов проекта ведет к необходимости выделения большего количества ресурсов. Оно начинает слабо и предсказуемо расти, когда компания сталкивается с реальными долгосрочными задачами и необходимостью соблюдать SLA, а также требования регуляторов.

Сроки гибкие, результат непредсказуем – значит, на проект может уйти больше ресурсов (времени, людей, денег), чем предполагалось.

Проекты, связанные с Большими данными, не всегда решают уникальные задачи. Эти проекты считаются научными без каких-либо бизнес-целей или показателей. Чтобы извлечь максимальную выгоду из этого, нужно направить усилия на конкретную потребность или проблему бизнеса. Чтобы оправдать инвестиции для проектов Big Data, требуется постоянно демонстрировать результаты. Бизнес требует быстрого и гибкого доступа к данным с прозрачными SLA. В результате оказывается, что бизнес ожидает большого количества дешевых инсайтов, а Big Data- и Data Science-специалисты требуют ресурсов на исследовательскую составляющую проектов и большую толерантность в ошибках и неудачах, являющихся неотъемлемой частью их работы. При правильном использовании, Big Data дает широкий спектр возможностей для бизнеса сегодня и в будущем. Проблема заключается в нехватке квалифицированных специалистов и неравномерной выдаче результатов. Это только вопрос времени, когда Big Data станет важной частью принятия бизнес-решений. Если эти ошибки будут учтены, станет намного проще реализовать любую стратегию, связанную с Большими данными. Еще один способ увеличить шансы на успех – использовать правильные инструменты для правильного проекта.

Вообще, все бизнес-цели можно разделить на два больших направления:

– Создание и запуск нового сервиса с использованием данных

– Оптимизация текущего процесса или сервиса с использованием данных

На практике необходимо забыть о сложности самих технологий и ограничениях в компетенциях, и использовать все возможности как необходимые компоненты при трансформации.

В первом случае расчет доходности использования технологий ничем не отличается от расчета окупаемости инвестиционных затрат при запуске нового продукта. Как ни банально, но мы переступили черту, где хотели кого-то удивить, и попали в мир, где уже «так принято» использовать данные.

Во втором случае финансовый эффект можно оценить по той части процесса, которую мы собираемся менять. Сравнивается себестоимость текущего звена процесса, размер сопутствующих операционных рисков и инвестиционных затрат на разработку и замену этого компонента сервисом с использованием данных. Строится описание текущего процесса, который планируется затронуть с использованием одной из существующих общепринятых нотаций (EPC[148], BPMN и других), где нужно заменить один из типизированных этапов в процессе:

1 ... 38 39 40 ... 42
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Big Data простым языком - Алексей Благирев», после закрытия браузера.

Комментарии и отзывы (0) к книге "Big Data простым языком - Алексей Благирев"