Онлайн-Книжки » Книги » 📂 Разная литература » Занимательная теория вероятности - Александр Исаакович Китайгородский

Читать книгу "Занимательная теория вероятности - Александр Исаакович Китайгородский"

23
0

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 37 38 39 ... 62
Перейти на страницу:
мы описали, явились окончательным и бесповоротным приговором противникам молекул.

Броуновское движение при этом сыграло свою коронную роль. Однако значение этого интересного явления, а также теории Эйнштейна не исчерпывается его служебной ролью прокурора в суде над феноменологистами.

Оно понадобилось математикам и физикам-теоретикам еще и как образец идеально беспорядочного движения. Зигзагообразные последовательности прямых отрезков — следы реальной траектории броуновской частицы — могут быть не только зафиксированы на клеточной бумаге, но и засняты на фотопленку. Но беспорядок в движении молекул (частиц) столь идеален (я надеюсь, что читатель уже без противления воспримет утверждение, что идеальным может быть не только порядок, но и беспорядок), что совершенно аналогичный зигзаг можно получить с помощью электронно-вычислительной машины, а если не быть придирчивым, то подбрасыванием монетки. Достаточно условиться, что «герб» будет означать поворот вправо, а «цифра» — влево, и мы можем построить картину случайных отклонений от прямого пути.

Итак, повторим еще раз: топтание на месте частицы эмульсии сравнивается с чередованием проигрышей и выигрышей игрока в «чет и нечет». В теории вероятностей такие сопоставления — самый обычный прием. Почти любая задача физики, биологии, техники и так далее, требующая применения теории вероятностей, всегда может быть сформулирована на языке карточной или рулеточной игры либо игры в кости или монету.

Но роль теории вероятностей в молекулярной физике далеко выходит за рамки доказательства движения молекул и нахождения средней скорости молекул. Теория позволяет получить отчетливое представление о характере распределения молекул по скоростям.

О скоростях автомобилей и молекул

Лет шестьдесят назад последний естествоиспытатель отбросил сомнения и поверил в существование молекул. Но зародилась молекулярно-кинетическая теория значительно раньше. Некоторые даже считают, что она старше 2000 лет и ведет отсчет от Демокрита. Если же, как говорилось выше, за теорию считать собрание постулатов, следствия которых могут быть количественно проверены на опыте, то началом эры молекулярно-кинетической теории является XIX век. Именно тогда Клаузиус и Джоуль показали, что огромная совокупность явлений становится предсказуемой, если принять, что законы теории вероятностей применимы к частицам, из которых построен мир, и что средняя кинетическая энергия беспорядочного движения молекул пропорциональна температуре.

К моменту, когда Перрен опубликовал свою работу, общие черты теории, представлявшей собой сплав теории вероятностей с молекулярными представлениями (этот сплав и получил название молекулярно-кинетической теории), уже были обрисованы в различных статьях и книгах. И почти все, что писалось в них по этому поводу, оказалось, как мы сейчас покажем, вполне справедливым.

Газ есть скопище молекул — крошечных телец, размером в десятимиллионные доли сантиметра. Молекулы движутся беспорядочно, сталкиваясь друг с другом и со стенками сосуда. Эти удары и, как уже говорилось, создают давление газа.

Газ — весьма разреженное состояние вещества. Среднее расстояние между молекулами газа при обычных температуре и давлении раз в 20 больше линейного размера молекулы. Движутся молекулы очень быстро — средние скорости их примерно равны километру в секунду.

Одной из первых задач, которую решила теория вероятностей для молекулярной физики, была задача о распределении молекул по скоростям. Сделал это замечательный английский физик Клерк Максвелл.

Распределение молекул по скоростям может быть представлено (описано) таблицей или кривой. Оно даст нам сведения о том, какая доля молекул обладает той или иной скоростью.

Чтобы изобразить распределение скоростей графически, мы откладываем по горизонтальной оси значения скоростей, а по вертикальной — количество (в процентах) движущихся с этой скоростью молекул. Полученная кривая характеризует, разумеется, мгновенное состояние газа.

Кривая распределения скоростей принадлежит к типу статистических кривых, с которыми мы уже неоднократно сталкивались. Тем не менее у нее есть особенности, заслуживающие внимания.

Положим, речь идет не о молекулах, а об автомобилях на улице Горького в Москве. Ровно в 12:00 зафиксированы скорости всех автомобилей. Часть их стоит, часть медленно движется со скоростью 10 километров в час, проклиная пассажиров, которые сгрудились на проезжей части дороги и мешают проезду через перекресток. Какие-то машины перемещаются со скоростями 20, 30… 60 километров в час. Процент водителей, нарушающих правила уличного движения и едущих со скоростями 70, 80 и даже 100 километров в час, окажется немалым, особенно подальше от автоинспекторов. Если посмотреть на этом автодорожном материале график распределения автомобилей по скоростям, то мы увидели бы наверняка, что получилась кривая с максимумом около 40 километров в час, (кстати, с большей средней скоростью днем по Москве и не проехать).

При построении графика скоростей обратите внимание на то, как понимать скорость, равную, скажем, 50 километрам в час. Под ней можно подразумевать все скорости от 45 до 55, если же требуется описать движение поточнее, тогда берут меньший интервал, например от 49 до 51. Точность не может быть беспредельной, и интервал «от — до» всегда молчаливо подразумевается, говорим ли мы о проценте людей, имеющих такой-то рост, о проценте доменных печей такой-то производительности или о таком-то проценте молекул или автомобилей, имеющих такую-то скорость. Впрочем, об этом мы уже говорили.

Без сомнения, распределение скоростей автомобилей подчиняется каким-то закономерностям. Закономерности эти очень сложные, и кривые будут разными для разных улиц, разной погоды, разного времени дня и года.

Что же касается кривой распределения молекул по скоростям, то она обладает тем выдающимся свойством, что зависит только от температуры и от массы молекул. Как выглядит кривая распределения скоростей для молекул заданной массы при данной температуре и что делается с кривой распределения, когда меняется температура, показал Клерк Максвелл.

Очень хотелось бы рассказать, как Максвелл произвел соответствующее вычисление, показать, что кривая Максвелла сродни гауссовой кривой, и продемонстрировать умение его просто объяснять сложные вещи. Однако воздержимся. Во-первых, это увело бы нас в сторону от темы нашей беседы и исказило бы гармонические пропорции книги, которые мы стремимся ей придать. Во-вторых, педагогический опыт подсказывает, что лишь небольшой процент читателей любит долго и упорно следовать за разматыванием логической нити научного открытия.

Но о результатах этого вычисления поговорить надо. Как должна выглядеть кривая, достаточно очевидно. Как и в случае с автомобилями, имеется небольшой процент молекул, движущихся очень быстро (они подверглись случайно серии попутных ударов); есть небольшой процент почти покоящихся молекул (они замедлились лобовыми ударами соседей); и больше всего будет молекул, имеющих скорость, близкую к средней. Почему близкую, а не равную? Здесь есть одна интересная тонкость.

Максимум кривой распределения попадает на то значение, которое встречается наиболее часто. Совпадает ли среднее значение с наиболее часто встречающимся, то есть с наиболее вероятным значением? Да, но только в тех случаях, когда отклонения «влево» и «вправо» одинаково вероятны. А это, конечно, будет

1 ... 37 38 39 ... 62
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Занимательная теория вероятности - Александр Исаакович Китайгородский», после закрытия браузера.

Комментарии и отзывы (0) к книге "Занимательная теория вероятности - Александр Исаакович Китайгородский"