Онлайн-Книжки » Книги » 👨‍👩‍👧‍👦 Домашняя » Магия математики. Как найти x и зачем это нужно - Артур Бенджамин

Читать книгу "Магия математики. Как найти x и зачем это нужно - Артур Бенджамин"

431
0

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 36 37 38 ... 89
Перейти на страницу:

m + n = 2j + 2k = 2(j + k)

А так как j + k – целое, m + n тоже будет кратно 2, значит, оно четное.◻

Обратите внимание, что доказательство основывается на аксиоме, согласно которой сумма двух целых чисел (в нашем случае j + k) так же является целым числом. Очень часто уже доказанные простые теоремы закладывают основу доказательной базы теорем более сложных, элементарные же аксиомы отбрасываются за ненадобностью. У математиков, кстати, принято ставить в конце последней линии цепочки доказательств значок ◻ или ■ либо аббревиатуру «ч.т.д.» – «что и требовалось доказать». (Также встречается аббревиатура Q.E.D., происходящая от латинской фразы «quod erat demonstrandum», «что и должно было быть продемонстрировано», ну или от английской «quite easily done», «ничего сложного» – выбирайте вариант по душе.) Я, с вашего позволения, буду иногда использовать еще один символ, смайлик ☺, когда доказательство покажется мне особенно стройным и красивым.

Редкий математик устоит перед тем, чтобы, доказав теорему по принципу «если…, то…», не попытаться доказать ее же, но наоборот, используя в качестве отправной точки обратное высказывание, то есть, по сути, меняя местами части «если…» и «то…». В нашем примере с четными числами обратным высказыванием станет предположение, что «если m + n является четным числом, то m и n также будут четными числами». Ошибочность его можно доказать контрпримером. Это несложно, буквально элементарно, как

1 + 1 = 2

где очень четко и ясно видно, что четное число можно получить сложением двух других чисел, которые четными не являются.

Следующая наша теорема касается нечетных чисел. Нечетным называется такое число, которое не делится на 2. Попытавшись это сделать, вы всегда получите 1 в остатке. Алгебраически n является нечетным, если n = 2k + 1, где k – целое число. Этого нам вполне хватит, чтобы доказать, что при умножении двух нечетных чисел мы получим третье нечетное.

Теорема: Если m и n – нечетные, то их произведение mn также будет нечетным.

Доказательство: Предположим, что m и n являются нечетными числами. Тогда m = 2j + 1, а n = 2k + 1 при целых значениях j и k. Тогда, согласно правилу FOIL,

mn = (2j + 1)(2k +1) = 4jk + 2j + 2k + 1 = 2(2jk + j + k) + 1

А так как 2jk + j + k – целое число, то mn есть форма «удвоенного целого числа + 1», а значит, нечетное число.◻

А что насчет обратного высказывания? Итак, если mn – нечетное, будут ли так же нечетными m и n? Будут, и подтвердить это можно, используя доказательство от противного. Для этого нам нужно показать, что опровержение части «то…» (что m и n суть нечетные) приведет к ошибке, причем не только во второй, но и в первой части «если…». Что и подтвердит довольно странным, но вполне логичным образом наше предположение.

Теорема: Если mn – нечетное, то и m и n будут также нечетными.

Доказательство: Предположим, что либо m, либо n (или оба) – четные числа. Выберем m (хотя по большому счету это не важно). Значит, m = 2j при целом значении j. Тогда произведение mn = 2jn также получится четным, что противоречит изначальному условию.◻

В том случае, когда теорему можно доказать как в «прямом», так и в «обратном» порядке, ее иногда называют теоремой по принципу «если и только если» (или «тогда и только тогда»). Как раз такую мы сейчас и доказали:

Теорема: m and n являются нечетными, если и только если mn – нечетное («…тогда и только тогда, когда mn – нечетное»).

Рациональные и иррациональные числа

Возможно, теоремы, которые мы только что рассмотрели, ничем вас не удивили, а их доказательства показались вам весьма прямолинейными. Куда большее удовольствие получаешь, пытаясь подтвердить менее очевидные предположения. Пока что мы довольствовались целыми числами – не пора ли заняться дробями? Число, которое можно представить в дробном виде, называется рациональным. Если быть точным, то число r является рациональным, если r = a/b, где a и b – целые числа, а b ≠ 0. Например, 23/58, –22/7 или 42 (равное, по сути, 42/1) – числа рациональные. Если же число не является рациональным, его называют иррациональным. Яркий тому пример, о котором вы, наверняка, слышали – число π = 3,14159…, но о нем чуть позже, в главе 8.

Для следующей нашей теоремы не лишним будет вспомнить, как вообще складывать дроби. И легче всего это делать, когда дроби имеют общий знаменатель, например:



В противном случае нам сперва придется привести дроби к общему знаменателю:



В целом же дроби a/b и c/d можно привести к общему знаменателю таким вот нехитрым способом:



И этого вполне достаточно, чтобы доказать несколько простых теорем, связанных с рациональными числами.

Теорема: Среднее арифметическое двух рациональных чисел также будет рациональным числом.

Доказательство: Возьмем два рациональных числа – x и y. Значит, в равенствах x = a/b и y = c/d значения a, b, c и d суть целые числа. Среднее арифметическое x и y, таким образом, можно представить как



Это дробь, числитель и знаменатель которой – целые числа. Следовательно, среднее арифметическое значение x и y является рациональным числом.

А теперь давайте подумаем, что же именно утверждается в этой теореме. А утверждается в ней то, что между двумя разными рациональными числами, насколько бы близки они друг другу ни были, всегда найдется еще одно рациональное число. Возникает искушение сделать из этого вывод, что все числа являются рациональными (как довольно долго думали древние греки). Нет, это не так. И смотрите, почему. Возьмем число √2, которое в десятичной записи выглядит как 1,4142… Если мы попробуем записать его как обычную дробь, получится что-нибудь вроде 10/7 или 1414/1000 (вариантов огромное множество), но все они будут приблизительными и никогда при возведении в квадрат не дадут 2. Но что, если мы просто плохо ищем? Да нет, не плохо, и следующая наша теорема как раз и показывает, что любые такие поиски бесполезны по определению. Доказательство будет строиться от противного, как это обычно и бывает, когда разговор заходит об иррациональных числах. А заодно мы увидим, как сократить дробь до ее несократимого значения – того предела, когда у числителя и знаменателя остается только один общий делитель – 1.

1 ... 36 37 38 ... 89
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Магия математики. Как найти x и зачем это нужно - Артур Бенджамин», после закрытия браузера.

Комментарии и отзывы (0) к книге "Магия математики. Как найти x и зачем это нужно - Артур Бенджамин"