Читать книгу "Физика на пальцах. Для детей и родителей, которые хотят объяснять детям - Александр Никонов"
Шрифт:
Интервал:
Закладка:
Трубы церковного органа. В самом большом органе Европы, расположенном в немецком городе Пассау, почти 18 тысяч (!) труб.
И вот в момент театрального затемнения, когда должна была поменяться сцена, в трубу подали воздух. И она неслышно зазвучала. В зале задрожали окна и начали звенеть хрустальные подвески в светильниках. Присутствовавшие в зале люди внезапно ощутили волну странного тоскливого беспокойства, на улице тревожно захрапели лошади. Больше трубу было решено не применять.
Сам Роберт Вуд так и не оценил эффект, с которым столкнулся. Зато его сполна оценили другие.
Ученые из Национальной физической лаборатории Англии провели аналогичный вудовскому эксперимент, только теперь он уже был поставлен по всем правилам науки. В аудиторию собрали 750 человек и попросили их прослушать концерт классической музыки, в котором среди обычных инструментов участвовали трубы, издававшие инфразвуки. Ассистировал физикам профессор психологии, в задачу которого входил опрос зрителей и тестирование их психологического состояния. Так вот, после концерта выяснилось, что зрителей концерт не порадовал, они чувствовали непонятный упадок настроения, тоску, гнетущую печаль, непонятный страх. Доходило до чисто физических реакций в виде мурашек по коже.
Дальнейшие исследования показали, что инфразвуки разной частоты по-разному, но все равно губительно влияют на человека. Они могут вызывать беспричинный страх, переходящий в неконтролируемую панику, боль, расстройства зрения и психики и при высокой мощности даже смерть.
В пятидесятые годы прошлого века исследованиями инфразвука занялись французы. Толчком к исследованиям послужила случайность: сотрудники лаборатории с какого-то момента вдруг начали чувствовать недомогание, некоторые ощущали сильную боль в ушах. В лаборатории звенели стаканы и вибрировали приборы. При этом никакого внешнего звука не слышалось. Поиск источника этих колебаний вскоре дал результат — их вызывал неисправный вентилятор в системе вентиляции соседнего здания. Его скорость упала, и он начал генерировать инфразвук.
Заинтересовавшись этим явлением, руководитель лаборатории Виктор Гавро положил начало целому комплексу исследований. Экспериментаторы начали создавать инфразвуковые генераторы разных частот и смотреть, как они влияют на человека. Источниками служили здоровенные трубы длиной в 24 метра, гигантские свистки, вмурованные в бетон, и полутораметровый «барабан» с прорезью — когда он работал, на потолке трескалась штукатурка. Гавро хотел построить генератор, который бы выдавал колебания частотой в 7 герц, но он просто не уместился бы в лаборатории. По подсчетам исследователей, его диаметр превышал бы 7 метров.
Такие большие размеры излучателей связаны с низкой частотой, то есть большой длиной волны. Если высокочастотные колебания можно получить маленькой дрожащей фитюлькой, то для возбуждения длинных колебаний нужна массивная медленно колеблющаяся штука, своими размерами сравнимая с длиной волны. Так, например, при частоте в 7 герц длина звуковой волны составляет аж 48,5 метров. Такие длинные волны трудно остановить, они, в силу огромности, просто огибают все препятствия и распространяются дальше. А это значит, что от инфразвука трудно защититься. Он легко проникает сквозь стены и может распространяться на тысячи километров почти без затухания.
Считается, что мощный инфразвук может не только вызывать безотчетный ужас, но и убить, так как при облучении частотой в 7 герц возможна остановка сердца. Дело в том, что определенные частоты инфразвука совпадают с резонансными частотами внутренних органов человека.
? А что такое резонансные частоты и что такое вообще резонанс?
Это довольно грозное явление, из-за которого солдатам не разрешают маршировать через мосты. Если рота солдат проходит через мост не в ногу, а вразнобой, мост их, конечно, выдержит. А вот если они будут шагать в ногу, то есть выстукивая каждый шаг синхронно, пролет моста может войти в раскачку и обрушиться.
Иными словами, резонанс — это совпадение собственной частоты колебаний предмета с частотой внешней раскачки. Детские качели представляете себе? Даже самый слабый и глупый малыш может самым маленьким усилием раскачать даже самые тяжелые качели очень сильно — потому что на каждом махе будет всего лишь чуть-чуть подталкивать качели в нужную сторону, с каждым качком все добавляя и добавляя им энергии. Это и называется резонанс — качели качаются с определенной частотой, и дурачок раскачивает их с такой же частотой, отчего амплитуда качаний все увеличивается.
А что такое «собственная частота» предмета? А это частота, на которой он может колебаться. Она зависит от размеров и свойств предмета. Есть, например, такая штучка, как камертон — это двузубая металлическая «вилка» с длинными «зубцами», которая при легком ударе вибрирует, издавая звук определенной частоты. Изменения размеров камертона приводят к изменению частоты колебаний. В результате один камертон колеблется на одной ноте, а второй — на другой.
Два камертона, настроенных на две разные ноты. С помощью таких вот устройств настраивают музыкальные инструменты, сравнивая звучание струны с эталонным звуком камертона
? А что такое резонатор?
Это особая система, в которой происходит накопление энергии колебаний из-за резонанса. Причем система не очень сложная. Гитару видели? Вот ее желтый корпус с круглой дыркой и есть резонатор. Звук струны входит в резонатор, и звуковые волны, отражаясь от его стенок, складываются, усиливая громкость. Такие же (только иного размера) резонаторы есть у скрипки, контрабаса, виолончели. Деревянные коробки-подставки, на которых стоят камертоны, — это тоже резонаторы.
Наверняка вы знаете такой фокус — если поднести к уху морскую раковину, то можно услышать, как говорят, «шум моря». Действительно, шум, похожий на шепот прибоя, слышится. Это, конечно же, никакой не шум моря. Это усиленный резонатором-раковиной обычный шумовой фон нашей жизни. Он называется белый шум. Малые шумы окружают нас всегда, даже в тихой квартире, но обычно мы их не слышим, поскольку они очень слабы. Однако в раковине эти слабенькие шумы «концентрируются» и усиливаются, многократно отражаясь от стенок и направляясь прямо в ухо. У вас есть дома приличных размеров раковина? Если нет, это прямой недосмотр родителей: быть у моря и не купить ребенку ракушку совершенно непростительно! Впрочем, этот недостаток можно исправить — вместо ракушки подойдет обычный стакан. Он точно так же усилит фоновый белый шум, если прислонить его к уху.
Кстати, а почему шум называется «белым»?
Внимание!
Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Физика на пальцах. Для детей и родителей, которые хотят объяснять детям - Александр Никонов», после закрытия браузера.