Читать книгу "Голая статистика. Самая интересная книга о самой скучной науке - Чарльз Уилан"
Шрифт:
Интервал:
Закладка:
С учетом вышесказанного (точнее говоря, написанного) концепция вероятности не является детерминистской. Да, от покупки лотерейных билетов следует воздержаться – тем не менее, купив лотерейный билет, вы можете выиграть деньги. Да, теория вероятностей может помочь нам поймать мошенников и уголовных преступников, но в случае ее неаккуратного использования за решеткой могут оказаться ни в чем не повинные люди. Все эти вопросы мы обсудим в главе 6.
5½. Загадка Монти Холла«Загадка Монти Холла» – знаменитая задача по теории вероятностей, поставившая в тупик участников игрового шоу под названием Let’s Make a Deal («Совершим сделку»), до сих пор популярного в ряде стран, премьера которого состоялась в Соединенных Штатах в 1963 году. (Помню, я всякий раз смотрел это шоу в детстве, когда не ходил в школу по причине болезни.) Во введении к книге я уже указывал, что в этом игровом шоу может быть интересно для статистиков. В конце каждого его выпуска участник, добравшийся до финала, становился вместе с Монти Холлом перед тремя большими дверями: Дверью № 1, Дверью № 2 и Дверью № 3. Монти Холл объяснял финалисту, что за одной из этих дверей скрывается очень ценный приз – например новый автомобиль, а за двумя другими – козел. Финалист должен был выбрать одну из дверей и получить то, что за ней находилось. (Я не знаю, был ли среди участников шоу хотя бы один человек, желающий получить козла, но для простоты рассуждений будем полагать, что подавляющее большинство участников мечтали о новом автомобиле.)
Начальную вероятность выигрыша определить довольно просто. Есть три двери, за двумя скрывается козел, а за третьей – автомобиль. Когда участник шоу вместе с Монти Холлом стоит перед этими дверями, у него есть один шанс из трех выбрать дверь, за которой находится автомобиль. Но, как отмечалось выше, в Let’s Make a Deal кроется подвох, увековечивший эту телепрограмму и ее ведущего в литературе по теории вероятностей. После того как финалист шоу укажет на какую-то из трех дверей, Монти Холл открывает одну из двух оставшихся дверей, за которой всегда находится козел. Затем Монти Холл спрашивает финалиста, не желает ли он изменить свое решение, то есть отказаться от ранее выбранной им закрытой двери в пользу другой закрытой двери.
Допустим, ради примера, что участник указал на Дверь № 1. Затем Монти Холл открыл Дверь № 3, за которой скрывался козел. Две двери, Дверь № 1 и Дверь № 2, по-прежнему остаются закрытыми. Если бы ценный приз находился за Дверью № 1, финалист выиграл бы его, а если за Дверью № 2, то проиграл бы. Именно в этот момент Монти Холл обращается к игроку с вопросом, не желает ли он изменить свой первоначальный выбор (в данном случае отказаться от Двери № 1 в пользу Двери № 2). Вы, конечно, помните, что обе двери пока закрыты. Единственная новая информация, которую участник получил, состоит в том, что козел оказался за одной из двух дверей, которые он не выбрал.
Следует ли финалисту отказаться от первоначального выбора в пользу Двери № 2?
Отвечаю: да, следует. Если он будет придерживаться первоначального выбора, то вероятность выигрыша им ценного приза составит ⅓; если же передумает и укажет на Дверь № 2, то вероятность выигрыша ценного приза будет ⅔. Если не верите мне, читайте дальше.
Признаю, что такой ответ на первый взгляд далеко не очевиден. Кажется, что, какую бы из оставшихся двух дверей ни выбрал финалист, вероятность получения ценного приза в обоих случаях равняется ⅓. Есть три закрытые двери. Поначалу вероятность того, что ценный приз скрывается за любой из них, составляет ⅓. Разве имеет какое-то значение решение финалиста поменять свой выбор в пользу другой закрытой двери?
Безусловно, поскольку закавыка заключается в том, что Монти Холл знает, что находится за каждой дверью. Если финалист выберет Дверь № 1 и за ней действительно будет автомобиль, то Монти Холл может открыть либо Дверь № 2, либо Дверь № 3, чтобы продемонстрировать козла, скрывающегося за ней.
Если финалист выберет Дверь № 1, а автомобиль будет за Дверью № 2, то Монти Холл откроет Дверь № 3.
Если же финалист укажет на Дверь № 1, а автомобиль окажется за Дверью № 3, то Монти Холл откроет Дверь № 2.
Изменив свое решение после того, как ведущий откроет какую-то из дверей, финалист получает преимущество выбора двух дверей вместо одной. Я попытаюсь убедить вас в правильности этого анализа тремя разными способами.
Первый – эмпирический. В 2008 году колумнист газеты The New York Times Джон Тайерни написал материал о «феномене Монти Холла»{41}. После этого сотрудники издания разработали интерактивную программу, которая позволяет вам сыграть в эту игру и самостоятельно принять решение, менять свой первоначальный выбор или нет. (В программе даже предусмотрены маленькие козлики и автомобильчики, которые появляются из-за дверей.) Программа фиксирует ваши выигрыши в случае, когда вы меняете свой первоначальный выбор, и в случае, когда остаетесь при своем мнении. Поэкспериментируйте сами[29]. Я заплатил одной из своих дочерей за то, чтобы она сыграла в эту игру 100 раз, каждый раз меняя первоначальный выбор. Я также заплатил ее брату, чтобы он тоже сыграл в эту игру 100 раз, каждый раз оставляя первоначальное решение. Дочь выиграла 72 раза; ее брат – 33 раза. Усилия каждого были вознаграждены двумя долларами.
Данные из эпизодов игры Let’s Make a Deal свидетельствуют о такой же закономерности. Согласно Леонарду Млодинову, автору книги The Drunkard’s Walk, те из финалистов, кто изменил свой первоначальный выбор, становились победителями примерно в два раза чаще, чем те, кто оставался при своем мнении{42}.
Мое второе объяснение данного феномена основывается на интуиции. Допустим, правила игры слегка поменялись. Например, финалист начинает с выбора одной из трех дверей: Двери № 1, Двери № 2 и Двери № 3, как и было предусмотрено изначально. Однако затем, прежде чем открыть какую-то из дверей, за которой скрывается козел, Монти Холл спрашивает: «Согласны ли вы отказаться от своего выбора в обмен на открывание двух оставшихся дверей?» Таким образом, если вы выбрали Дверь № 1, вы можете передумать в пользу Двери № 2 и Двери № 3. Если сперва указали на Дверь № 3, можете выбрать Дверь № 1 и Дверь № 2. И так далее.
Для вас это было бы не особо трудным решением: совершенно очевидно, что вам следует отказаться от первоначального выбора в пользу двух оставшихся дверей, поскольку это повышает шансы на выигрыш с ⅓ до ⅔. Самое интересное, что именно такой в сущности вариант предлагает вам Монти Холл в реальной игре, после того как откроет дверь, за которой скрывается козел. Принципиальный факт заключается в том, что если бы вам была предоставлена возможность выбрать две двери, за одной из них в любом случае скрывался бы козел. Когда Монти Холл открывает дверь, за которой находится козел, и только после этого спрашивает вас, согласны ли вы изменить свой первоначальный выбор, он существенно повышает ваши шансы на выигрыш ценного приза! По сути, Монти Холл говорит вам: «Вероятность того, что ценный приз скрывается за одной из двух дверей, которые вы не выбрали с первого раза, составляет ⅔, а это все-таки больше чем ⅓!»
Внимание!
Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Голая статистика. Самая интересная книга о самой скучной науке - Чарльз Уилан», после закрытия браузера.