Читать книгу "О том, чего мы не можем знать. Путешествие к рубежам знаний - Маркус Дю Сотой"
Шрифт:
Интервал:
Закладка:
Например, дельта-барион распадается за 6 · 10–24 секунды на протон и пион через сильное ядерное взаимодействие, а сигма-гиперон распадается на те же протон и пион за 8 · 10–11 секунды. Большее время распада говорит о том, что он происходит с участием слабого ядерного взаимодействия. Между двумя этими случаями мы находим пример нейтрального пиона, распадающегося через электромагнитное взаимодействие на два фотона, что занимает 8,4 · 10–17 секунды.
Представим себе шар, лежащий в ложбине. Если слегка подтолкнуть шар вправо, он перекатится через бугорок и попадет в более глубокую ложбину. Этот путь соответствует сильному ядерному взаимодействию. Слева от шара расположен более высокий бугорок, за которым также лежит состояние с более низкой энергией. Это направление соответствует действию слабого ядерного взаимодействия.
Так почему же дельта-барион находит легкий путь через низкий бугорок, а сигма-гиперон преодолевает дополнительные препятствия? Такое поведение казалось странным. Получалось, что некоторые частицы наталкиваются на некий барьер (обозначенный прерывистой линией), который мешает им попасть в нижнюю ложбину по легкому пути.
Дельта-барион (Δ) распадается на протон и пион через сильное взаимодействие. В отличие от него сигма-гиперон (Σ) распадается через слабое взаимодействие
Физики Абрахам Пайс, Мюррей Гелл-Манн и Кадзухико Нисидзима придумали хитроумный способ разрешения этой загадки. Они предложили новое свойство, подобное заряду, которое определяло, могут или не могут такие частицы участвовать в сильном взаимодействии. Такое новое свойство, названное странностью, позволило физикам классифицировать все эти новые частицы. Каждой частице можно было присвоить значение странности в соответствии с тем, проходил или не проходил ее распад по «длинному пути».
Идея состояла в том, что сильное взаимодействие не может изменить странность частицы, так что если две частицы имеют разную странность, то распад одной в другую через сильное взаимодействие невозможен. На пути в нижнюю ложбину стоит барьер. Однако слабое взаимодействие может изменить странность. Поэтому, раз дельта-барион распадается в протон через сильное взаимодействие, обе эти частицы имеют одинаковую странность, равную 0; в то же время сигма-гиперон имеет другое значение странности, так как для его распада в протон необходимо слабое взаимодействие, и ему приписали странность, равную –1. То, что это значение получилось отрицательным, связано только с причудами нумерации разных частиц. Если бы оно было равно 1, а не –1, ничего не изменилось бы.
Затем были обнаружены еще более экзотические частицы, возникающие в высокоэнергетических столкновениях, – они распадались в два этапа. Их назвали каскадными частицами и предположили, что они обладают двойной странностью, то есть имеют странность, равную –2. Результат первого этапа распада имеет странность –1 и распадается на протоны и нейтроны, имеющие нулевую странность. Это несколько похоже на фокус с вытягиванием кролика из шляпы, но он составляет часть научного процесса. В науке то и дело приходится извлекать что-нибудь из шляпы. Большую часть извлеченного приходится отбрасывать, так как она ни на что не годится. Но, если вытаскивать достаточно долго, рано или поздно попадется кролик. Гелл-Манн рассказывал: «Я придумал теорию странности, когда объяснял кому-то одну неправильную идею: я случайно оговорился, и получилась теория странности». Как оказалось, странность была в высшей степени замечательным кроликом.
Исходно понятие странности было введено в качестве бухгалтерского фокуса, приема, который облегчал учет каналов распада из одних частиц в другие. Никто не предполагал, что в идее странности содержится какой бы то ни было физический смысл. Она была нужна, только чтобы установить очередной набор клеток в зоопарке частиц. Но эта новая характеристика оказалась первым намеком на существование гораздо более глубокой физической реальности, действующей под всеми этими частицами. Ключевой момент настал, когда частицы со сходной массой нанесли на график, связывающий значения странности и электрического заряда. Получившаяся картина была преисполнена симметрии.
Частицы расположились по шестиугольной решетке, причем в центральной точке этой решетки находились сразу две частицы. Если пионы и каоны расположить на графике зависимости странности от заряда, то тоже получается сходная структура. Когда получаешь такую конструкцию, это несомненно что-то значит. Ключ к пониманию более глубокой реальности, лежащей за этими частицами, состоял в осознании того, что шестиугольные структуры, которые они образовывали, не были чем-то новым – они встречались и раньше. Не в физике, а в математике симметрии.
Для человека, изучавшего математику симметрии, такая шестиугольная система клеток со сдвоенной точкой в центре выглядит очень знакомо. Она является визитной карточкой вполне конкретного симметричного объекта, называемого группой SU(3).
На мой взгляд, это великолепно. Про симметрию я знаю. У меня появляется шанс понять, что происходит в глубинах моей игральной кости. Собственно говоря, моя кость – это идеальное средство объяснения идей, которые лежат в основе математики симметрии. Преобразованиями симметрии такого кубика (если пренебречь очками на его гранях) называются все способы взять кубик, повернуть его и положить обратно так, чтобы он выглядел точно таким же образом, как раньше. Всего таких движений существует 24. Например, кубик можно просто повернуть на четверть оборота вокруг одной из граней или повернуть его на треть оборота вокруг одной из осей, проходящих через противоположные углы кубика.
Всего разных вариантов действий существует 24 (включая тот странный вариант, в котором кубик вообще можно оставить в покое и ничего с ним не делать). Этот набор симметричных движений называют S 4 или группой симметрии четвертого порядка. С учетом зеркальной симметрии, то есть того обстоятельства, что кость также можно увидеть в зеркальном отражении, у такого кубика имеется 48 разных симметрий.
Кубик следует рассматривать как геометрическую форму в трехмерном пространстве, на которую воздействует группа симметрии S 4. Но существуют и другие геометрические формы, имеющие те же симметрии. Например, другой трехмерной геометрической формой, группа симметрии которой та же, что и у куба, является октаэдр. Кроме того, существуют объекты более высоких размерностей, также имеющие группу симметрии S 4. Таким образом, имеется много разных геометрических форм, в основе которых лежит одна и та же группа симметрии.
Внимание!
Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «О том, чего мы не можем знать. Путешествие к рубежам знаний - Маркус Дю Сотой», после закрытия браузера.