Онлайн-Книжки » Книги » 👨‍👩‍👧‍👦 Домашняя » Семь этюдов по физике - Карло Ровелли

Читать книгу "Семь этюдов по физике - Карло Ровелли"

364
0

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4 ... 12
Перейти на страницу:

Эйнштейн показал, что свет состоит из порций – частиц света. Сегодня мы называем их фотонами. Он написал во вступлении к своей статье:

Я и в самом деле думаю, что опыты, касающиеся «излучения черного тела», фотолюминесценции, возникновения катодных лучей при освещении ультрафиолетовыми лучами и других групп явлений, связанных с возникновением и превращением света, лучше объясняются предположением, что энергия света распределяется по пространству дискретно. Согласно этому сделанному здесь предположению, энергия пучка света, вышедшего из некоторой точки, не распределяется непрерывно во все возрастающем объеме, а складывается из конечного числа локализованных в пространстве неделимых квантов энергии, поглощаемых или возникающих только целиком.[1]

Эти простые и ясные строки – настоящее свидетельство о рождении квантовой теории. Обратите внимание на прекрасное начало «Я… думаю…», отсылающее нас к тем же словам, которыми Дарвин предваряет в своих дневниках великую идею о том, что виды эволюционируют, и к «неуверенности», как написал Фарадей, когда впервые выдвигал революционную идею магнитных полей. Гении сомневаются.

К работе Эйнштейна коллеги поначалу отнеслись как к неуклюжей пробе пера исключительно одаренного юноши. Именно за эту работу он впоследствии получил Нобелевскую премию. Если Планк – отец теории, то Эйнштейн – родитель, воспитавший ее.

Однако, как любое дитя, теория затем пошла своим собственным путем, не распознанным самим Эйнштейном. Только датчанин Нильс Бор во втором и третьем десятилетиях XX века положил начало ее развитию. Именно Бор понял, что энергия электронов в атомах может принимать лишь определенные значения, как энергия света, и, самое главное, что электроны способны только «перескакивать» между одной атомной орбитой и другой с фиксированными энергиями, испуская или поглощая фотон при скачке. Это знаменитые «квантовые скачки». И именно в институте Бора в Копенгагене самые блестящие молодые умы века собрались вместе, чтобы изучить эти загадочные особенности поведения в мире атомов, попытаться привнести в них порядок и построить непротиворечивую теорию. В 1925 году уравнения теории наконец появились, заменив собой всю механику Ньютона.

Трудно представить себе более выдающееся достижение. Все сразу обретает смысл, и вы можете все вычислить. Один простой пример: помните периодическую таблицу элементов, составленную Менделеевым, в которой перечислены все возможные простые вещества, входящие в состав Вселенной, от водорода до урана, и которая висит на стенах многих школьных классов? Почему в ней перечислены именно эти элементы и почему периодическая таблица имеет конкретно такую структуру, с этими периодами и элементами, обладающими именно этими специфическими свойствами? Ответ в том, что каждый элемент соответствует одному решению главного уравнения квантовой механики. Вся химия возникает из единственного уравнения.

Первым, кто написал уравнения новой теории, основываясь на невообразимых идеях, был молодой немецкий гений – Вернер Гейзенберг.

Гейзенберг предположил, что электроны существуют не всегда. А только тогда, когда кто-то или что-то наблюдает за ними – или, лучше сказать, когда они взаимодействуют с чем-то еще. Они материализуются на месте, с вычислимой вероятностью, когда с чем-либо сталкиваются. Квантовые скачки с одной орбиты на другую – единственный способ быть «реальными» в их распоряжении: электрон есть набор скачков от одного взаимодействия до другого. Когда ничто его не тревожит, он не находится ни в каком конкретном месте. Он вообще не в «месте».

Словно Бог не изобразил реальность четко прочерченной линией, а лишь наметил ее еле видным пунктиром.

В квантовой механике ни один объект не имеет определенного положения, за исключением случаев, когда он сталкивается лоб в лоб с чем-то еще. Чтобы описать его посередине между одним взаимодействием и другим, мы используем отвлеченную математическую формулу, которая не существует в реальном пространстве, только в абстрактном математическом. Но есть кое-что и похуже: эти основанные на взаимодействии скачки, которыми каждый объект перемещается из одного места в другое, происходят не предсказуемым образом, а по большому счету случайным. Невозможно предсказать, где электрон появится вновь, можно лишь вычислить вероятность, с которой он возникнет здесь или там. Вопрос вероятности ведет в самое сердце физики, где все, как прежде казалось, регулируется строгими законами, универсальными и неотвратимыми.

Считаете это нелепостью? Так думал и Эйнштейн. С одной стороны, он выдвинул кандидатуру Гейзенберга на соискание Нобелевской премии, признавая, что тот понял о мире нечто принципиально важное, тогда как с другой – не упускал ни единого случая, чтобы поворчать о том, что в утверждениях Гейзенберга не слишком-то много смысла.

Молодые львы копенгагенской группы были растеряны: как это возможно, чтобы Эйнштейн так думал? Их духовный отец, человек, который первым явил отвагу мыслить непомыслимое, теперь отступил и боялся этого нового прыжка в неизвестное, прыжка, им же самим и вызванного. Тот же Эйнштейн, показавший, что время не универсально и пространство искривлено, теперь говорил, что мир не может быть настолько странным.

Бор терпеливо объяснял новые идеи Эйнштейну. Эйнштейн выдвигал возражения. Он придумывал мысленные эксперименты, чтобы показать противоречивость новых идей. «Представьте себе ящик, наполненный светом, из которого вылетает один фотон…»[2] – так начинается один из его знаменитых примеров, мысленный эксперимент над ящиком со светом. В конце концов Бор всегда умудрялся найти ответ, который опровергал возражения Эйнштейна. Их диалог продолжался годами – в виде лекций, писем, статей… В ходе этого обмена мыслями обоим великим ученым приходилось отступать, менять свой подход. Эйнштейн вынужден был согласиться, что никакого противоречия в новых идеях на самом деле нет, а Бор – признать, что все не так просто и прозрачно, как он полагал изначально. Эйнштейн не хотел уступать в том, что для него было ключевым моментом: что есть объективная реальность, не зависящая от того, кто и с чем взаимодействует. Бор не отступился бы от кардинально нового способа, каким квантовая теория осмысляла действительность. В конце концов Эйнштейн признал, что эта теория – гигантский шаг вперед в нашем понимании мира, но остался убежден, что все не может быть настолько странным, как предполагается ею, – что «за» этой теорией должно быть следующее, более разумное объяснение.

Век спустя мы все на том же месте. Уравнения квантовой механики и их следствия применяются ежедневно в самых разных областях – физиками, инженерами, химиками и биологами. Они играют чрезвычайно важную роль во всех современных технологиях. Без квантовой механики не было бы никаких транзисторов. И все же эти уравнения остаются загадочными. Поскольку описывают не то, что происходит с физической системой, а только как физическая система влияет на другую физическую систему.

1 2 3 4 ... 12
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Семь этюдов по физике - Карло Ровелли», после закрытия браузера.

Комментарии и отзывы (0) к книге "Семь этюдов по физике - Карло Ровелли"