Читать книгу "Максвелл. Электромагнитный синтез - Мигель Анхель Сабадель"
Шрифт:
Интервал:
Закладка:
Пять лет назад Максвелл опубликовал работу об электромагнетизме, и у него было ощущение, будто чего-то не хватает. Ученый вывел все формулы, которые объясняли, что происходит со статическими электрическим и магнитным полями. Благодаря аналогии с потоком тепла ему также удалось ввести в эту схему постоянные во времени электрические токи. Но вне ее оказались все динамические электрические и магнитные явления. В этом случае его аналогия была абсолютно бесполезной.
У Максвелла были только два пути: оставить направление, намеченное Фарадеем, и вернуться к таинственному дальнодействию или пойти дальше чистой аналогии и придумать механическую модель электромагнитного поля — механизма, который вел бы себя точно так же, как реальное явление. Такая модель должна была учитывать четыре эффекта, известных в то время: силы между электрическими зарядами в состоянии покоя, силы между магнитными полюсами, магнитное поле, создающее ток, и электрический ток, создающий магнитное поле в катушке. В этот раз целью Максвелла было найти не аллегорию, а физическую модель — наподобие той, которую он описал в «Пояснениях к динамической теории газов». И вдохновение снова пришло от Томсона.
МОЛЕКУЛЯРНЫЕ ВИХРИ
Томсон пытался объяснить некое явление, открытое Фарадеем, при котором электромагнитное поле влияет на характеристики света (так называемый «магнитооптический эффект»). Он говорил, что силовые линии Фарадея — это вращающиеся оси эфира, тонкого флюида, который, как считалось, заполняет пространство. Колебания, образующие, как предполагалось, свет, взаимодействовали с этим круговым движением элементов эфира, ось которого параллельна магнитному полю.
Данный вопрос пробудил интерес Максвелла, и в ноябре 1857 года он написал Фарадею, объяснив, что хочет найти обобщение теории Томсона, которая приведет его к «возможному подтверждению физической природы магнитных силовых линий». Так начался поиск того, что назвали теорией молекулярных вихрей. В январе 1858 года Максвелл писал Томсону о своей убежденности в том, что «магнетизм проистекает из вращения какого-то типа материи». Ученый продолжил описывать план эксперимента с магнитом в свободном вращении, который он сконструировал в 1861 году с целью обнаружить подобные вихри. «Я не нашел никакого доказательства этому», — признался он Томсону в декабре того же года.
ПЕРВАЯ ЦВЕТНАЯ ФОТОГРАФИЯ
В мае 1861 года Королевский институт пригласил Максвелла рассказать о его теории цветов. Вместо того чтобы говорить о принципах, Джеймс решил, что лучше сделать демонстрацию того, как на основе трех первичных цветов можно образовать любой другой. Он хотел сделать три фотографии одного и того же объекта с помощью разных светофильтров — зеленого, красного и синего — и показать их одновременно наложенными друг на друга. Но существовала одна проблема: фотографические пластинки того времени были чувствительны к синему цвету, и очень мало — к красному. Тем не менее попробовать все же стоило. Один коллега Максвелла в Кингсе — знаток фотографии Томас Саттон (1819-1875) — вызвался ему помочь. Ученые сделали три фотографии ленты из ткани-шотландки и наложили их друг на друга: она выглядела чудесно. Публика, которая присутствовала в тот день в Королевском институте, смогла увидеть первую в истории цветную фотографию. И самое удивительное: никто больше не мог повторить подобное еще много лет. Как такое возможно? Эксперты из лаборатории «Кодак» решили загадку век спустя. По их мнению, эксперимент Максвелла не должен был сработать, потому что фотографическая пластинка была абсолютно нечувствительной к красному свету. Задуманное у него получилось только благодаря последовательной цепи счастливых совпадений. С одной стороны, шотландка, кроме красного света, отражала немного ультрафиолетового излучения, и красный фильтр Саттона пропускал эту часть спектра. С другой стороны, эмульсия, использованная в пластинках, была чувствительна совсем не к красному цвету, а к ультрафиолету. На самом деле фотография, сделанная якобы в красном свете, была получена в области спектра, невидимой человеческому глазу: в ультрафиолете.
Первая цветная фотография (ее назвали «Ленточка из шотландки»), сделанная в 1861 году Томасом Саттоном по указаниям Джеймса Клерка Максвелла.
Несколькими месяцами ранее, в период с марта по май, Максвелл опубликовал две части своей статьи «Физические силовые линии» в «Философском журнале». Работа над ней была долгой и практически секретной. О ней ничего не упоминалось в переписке ученого с января 1858 по октябрь 1861 года, когда она уже была опубликована.
Максвелл говорил о существовании некоего физического механизма, который служит субстратом электромагнитного поля. По сути он предположил, что все пространство полно крошечных круглых ячеек, упакованных компактно, с очень низкой плотностью и способных вращаться (см. рисунок на стр. 149, где круглые ячейки для наглядности заменены на шестиугольные). Сосредоточимся на одной из них. Когда она вращается, центробежная сила изменяет ее форму, расширяя по экватору и сжимая вдоль оси вращения так же, как это происходит с нашей планетой. Естественно, расширяясь посередине, она будет толкать остальные ячейки, которые ее окружают. А если все станет вращаться в одном направлении, то система будет осуществлять эффективное давление (толкать) в направлении, перпендикулярном оси вращения. Если мы посмотрим на ось вращения, то увидим точно противоположное. Так как в полюсах ячейки имеют тенденцию сжиматься, можно это истолковать так, что появляется натяжение. Следовательно, если все ячейки образуют линию в пространстве, то ось вращения и направление, перпендикулярное ей, будут вести себя как силовые линии, предложенные Фарадеем: появятся сила притяжения вдоль оси вращения и сила отталкивания в направлениях, перпендикулярных ей. Более того, так как эти ячейки могут вращаться по часовой стрелке или против нее, обе ситуации позволяют определить два направления поля (представленные на рисунке знаками + и -).
Здесь Максвелл столкнулся с маленькой проблемой: железо и дерево в присутствии магнита не ведут себя одинаково. Как отразить данное различие? Джеймс понял, что различную магнитную чувствительность можно включить в модель, просто поменяв плотность ячеек. В терминах механики это означает, что высокая магнитная чувствительность железа равносильна наличию более плотных ячеек в этом металле.
Механическая модель молекулярных вихрей, которую Максвелл использовал для объяснения электромагнитных явлений.
У него уже была построена модель: оси вращения ячеек определяли направление магнитного поля в любой точке пространства, а их плотность и скорость вращения — его интенсивность. Но что начинало вращать эти ячейки? Более того, как можно наблюдать на рисунке, если две смежные ячейки вращаются в одном и том же направлении, их поверхности (которые находятся в контакте, чтобы соблюсти компактное расположение) трутся друг о друга в противоположном направлении, что в итоге остановит вращение. Джеймс предположил, что между ячейками есть другие, более мелкие частицы, которые действуют как подушечки. Максвелл высказал мнение, что эти «подушечки» являются частичками электричества, поэтому в присутствии электрического поля они начнут двигаться вдоль зазоров между ячейками: появится электрический ток. Оказывается очевидным, что именно данное перемещение наших особенных «подушечек» вызывает вращение ячеек.
Внимание!
Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Максвелл. Электромагнитный синтез - Мигель Анхель Сабадель», после закрытия браузера.