Читать книгу "Краткая история времени: От Большого Взрыва до черных дыр - Стивен Хокинг"
Шрифт:
Интервал:
Закладка:
Разумеется, если бы черная дыра, находящаяся на расстоянии Плутона, закончив свой жизненный цикл, взорвалась, последний всплеск излучения можно было бы с легкостью зарегистрировать. Но если черная дыра продолжает излучать в течение последних десяти или двадцати тысяч миллионов лет, то шансы на то, что ее гибель придется на ближайшие несколько лет, а не на те несколько миллионов лет, что уже прошли или еще наступят, действительно очень малы. Значит, чтобы иметь реальную возможность увидеть взрыв до окончания финансирования эксперимента, вы должны придумать, как регистрировать взрывы, происходящие на расстоянии порядка одного светового года. Вам все равно будет нужен большой детектор гамма-излучения, чтобы зарегистрировать несколько гамма-квантов из тех, что образуются при взрыве. Но в этом случае отпадает необходимость проверять, что все гамма-кванты приходят с одной и той же стороны: достаточно будет знать, что все они зарегистрированы в течение очень короткого промежутка времени, чтобы быть уверенным в том, что их источником является одна и та же вспышка.
Один из детекторов гамма-излучения, с помощью которого можно было бы опознавать первичные черные дыры, – это вся атмосфера Земли. (Во всяком случае, вряд ли нам удастся построить детектор большего размера!) Когда гамма-квант, обладающий высокой энергией, сталкивается в земной атмосфере с атомами, рождаются пары из электронов и позитронов (антиэлектронов), которые в свою очередь сталкиваются с атомами и образуют новые электронно-позитронные пары. Возникает так называемый электронный ливень. Связанное с ним излучение представляет собой один из видов светового и называется черенковским. Поэтому вспышки гамма-излучения можно регистрировать, следя за световыми вспышками в ночном небе. Существуют, конечно, и другие явления (такие как молния и отражение света от крутящихся спутников и обращающихся по орбитам ступеней ракет-носителей), которые тоже сопровождаются вспышками на небе. Вспышки, обусловленные гамма-излучением, можно отличить от этих явлений, проводя наблюдения одновременно из двух или большего числа пунктов, сильно удаленных друг от друга. Такие поиски предприняли в Аризоне двое ученых из Дублина – Нил Портер и Тревор Уикс. С помощью телескопов они обнаружили несколько вспышек, но ни одну из них нельзя было с определенностью приписать всплескам гамма-излучения первичных черных дыр.
Даже если поиск первичных черных дыр даст отрицательные результаты, а он может их дать, мы все равно получим важную информацию об очень ранних стадиях развития Вселенной. Если ранняя Вселенная была хаотической, или нерегулярной, или если давление материи было мало́, можно было бы ожидать образования значительно большего числа черных дыр, чем тот предел, который нам дали наблюдения фона гамма-излучения. Объяснить, почему черные дыры не существуют в таком количестве, в каком их можно было бы наблюдать, можно лишь в том случае, если ранняя Вселенная была очень гладкой и однородной, с высоким давлением вещества.
Вывод о том, что черные дыры могут испускать излучение, был первым предсказанием, которое существенным образом основывалось на обеих великих теориях нашего века – общей теории относительности и квантовой механике. Вначале этот вывод встретил сильное противодействие, так как шел вразрез с распространенным представлением: «Как черная дыра может что бы то ни было излучать?» Когда я впервые объявил о своих результатах на конференции в Резерфордовской лаборатории под Оксфордом, все к ним отнеслись недоверчиво. В конце доклада председатель секции Джон Тейлор из Королевского колледжа в Лондоне заявил, что все это чепуха. Он даже написал статью, чтобы доказать, что я не прав. Но в конце концов большинство, в том числе и Джон Тейлор, пришли к выводу, что черные дыры должны излучать как горячее тело, если только верны все остальные представления общей теории относительности и квантовой механики. Таким образом, хотя нам и не удалось отыскать первичную черную дыру, но если бы вдруг это удалось, то, по довольно общему убеждению, черная дыра должна была бы испускать мощное гамма– и рентгеновское излучение.
Вывод о существовании излучения, испускаемого черными дырами, по-видимому, означает, что гравитационный коллапс не так уж окончателен и необратим, как мы думали раньше. Если астронавт упадет в черную дыру, то ее масса увеличится, но в конце концов количество энергии, эквивалентное этой прибавке массы, вернется во Вселенную в форме излучения. Следовательно, в каком-то смысле астронавт будет «регенерирован». Это, конечно, не самый лучший вид бессмертия: собственное представление о времени у астронавта почти наверняка пропадет, когда он разлетится на клочки внутри черной дыры! Даже частицы, испущенные черной дырой для компенсации массы астронавта, будут не теми, из которых он состоял: единственное свойство астронавта, которое сохранится, – это его масса или энергия.
Приближения, которыми я пользовался в расчетах излучения черных дыр, должны хорошо выполняться, когда масса черной дыры превышает доли грамма, но они неприменимы в конце жизни черной дыры, когда ее масса становится очень малой. По-видимому, наиболее вероятный исход – это просто исчезновение черной дыры, по крайней мере из нашей области Вселенной. Исчезнув, она унесет с собой и астронавта, и любую сингулярность, которая могла бы в ней оказаться. Это было первое указание на возможность устранения квантовой механикой сингулярностей, предсказываемых общей теорией относительности. Однако те методы, которыми и я, и другие ученые пользовались в 1974 г., не могли дать ответы на такие вопросы, как, например, появятся ли сингулярности в квантовой гравитации. Поэтому начиная с 1975 г. я занялся разработкой более действенного подхода к квантовой гравитации, основанного на фейнмановском суммировании по историям (траекториям). Ответы на вопросы о происхождении и судьбе Вселенной и того, что в ней находится, например астронавтов, полученные при таком подходе, будут изложены в двух следующих главах. Мы увидим, что хотя принцип неопределенности и налагает ограничения на точность всех наших предсказаний, он все же устраняет фундаментальную непредсказуемость, возникающую в сингулярности пространства-времени.
Рождение и гибель Вселенной
В общей теории относительности Эйнштейна, самой по себе, делается вывод, что пространство-время возникло в сингулярной точке Большого Взрыва, а свой конец оно должно находить в сингулярной точке Большого Схлопывания (если коллапсирует вся Вселенная) и в сингулярности внутри черной дыры (если коллапсирует какая-нибудь локальная область типа звезды). Любое вещество, упавшее в такую дыру, в сингулярности должно разрушиться, и снаружи будет ощущаться лишь гравитационное воздействие его массы. Когда же были учтены квантовые эффекты, то оказалось, что масса и энергия вещества в конце концов должны, по-видимому, возвращаться оставшейся части Вселенной, а черная дыра вместе со своей внутренней сингулярностью должна испариться и полностью исчезнуть. Будет ли столь же большим влияние квантовой механики на сингулярности в точках Большого Взрыва и Большого Схлопывания? Что в действительности происходит на очень ранних и очень поздних стадиях развития Вселенной, когда гравитационные поля настолько сильны, что нельзя пренебрегать квантовыми эффектами? Есть ли действительно у Вселенной начало и конец? А если есть, то каковы они?
Внимание!
Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Краткая история времени: От Большого Взрыва до черных дыр - Стивен Хокинг», после закрытия браузера.