Онлайн-Книжки » Книги » 💉 Медицина » Я – суперорганизм! Человек и его микробиом - Джон Тёрни

Читать книгу "Я – суперорганизм! Человек и его микробиом - Джон Тёрни"

196
0

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 28 29 30 ... 81
Перейти на страницу:

Многие сигнальные системы клеток работают таким образом. В наших тканях существуют тысячи различных рецепторов, сопряженных с G-белком, как и других рецепторов из того же семейства, действующих посредством разных агентов передачи сигнала. Поэтому не удивительно, что некоторые из них связывают бутират (и ацетат). Их так много, что им присваивают названия с номерами. В данном случае первый рецептор, который встречает наша молекула, именуется Gpr43. Его форма предназначена для связывания трех наиболее распространенных короткоцепочечных насыщенных жирных кислот. Он помогает приглушать воспалительные реакции.

Затем наша молекула бутирата слезает с этого рецептора и попадает на другой – Gpr109a. Он игнорирует иные короткоцепочечные насыщенные жирные кислоты и захватывает лишь бутират (хотя, поскольку клеточная биология вообще полна скрещивающихся путей, он способен также откликаться на присутствие витамина B3 – ниацина, еще одного продукта жизнедеятельности кишечных бактерий). Этот рецептор после активации выполняет в кишечнике сходную противовоспалительную роль. Похоже, он также снижает вероятность развития рака толстой кишки. И вот пример типичной сложной взаимосвязи, помогающей клеточным сообществам самоорганизовываться: выработка этого рецептора в толстой кишке резко усиливается в присутствии кишечных бактерий. Что это – еще один эффект бутирата? Мы пока не знаем.

Но и это лишь краткая встреча. Наша универсальная молекула бутирата плывет дальше, чтобы соединиться с рецептором Gpr41, который подает клеткам сигнал усилить выработку лептина – гормона, играющего весьма важную роль в контроле аппетита, метаболизма жиров и их накопления. И наконец, бутират прочно связывается с рецептором еще одного типа – транспортным белком, который переносит бутират внутрь клетки нашего тела (в данном случае – клетки эпителия толстой кишки). Оказавшись там, молекула высвобождается и может взаимодействовать с новыми партнерами. Так, одна из хорошо изученных функций внутриклеточного бутирата – ингибирование фермента, который ускоряет отщепление ацетильных групп от гистонов – белков, участвующих в упаковке нитей ДНК. Здесь следует отметить, что повышенная активность данного фермента – одна из характерных особенностей клеток злокачественной опухоли толстой кишки.

Таков лишь один из множества возможных конечных пунктов этого молекулярного путешествия. Если клетка, переносящая в себе бутират, окажется Т-лимфоцитом, присутствие бутирата может побудить ее стать более специализированной иммунной клеткой. Существуют транспортные агенты, переправляющие бутират через эпителий кишечника, чтобы это вещество попало в кровь. А уж вместе с кровью бутират может направиться практически куда угодно. По мнению некоторых специалистов, похожие транспортные агенты могут нести короткоцепочечные насыщенные жирные кислоты в мозг и нервные клетки. Возможно, существует даже некая связь между такой доставкой и тем фактом, что опыты на мышах как будто показывают – введение значительных доз бутирата может оказывать антидепрессивное действие. (К этой находке мы еще вернемся в главе 9.)

Но давайте закончим наше воображаемое путешествие именно здесь. Оно позволяет представить себе лишь некоторые детали, известные нам о бутирате и о том, что он способен делать. Конечно, пока мы знаем далеко не все. Однако этот беглый рассказ позволяет представить себе и другие похожие истории о молекулах, каждая разновидность которых успела сыграть множество ролей с тех самых пор, как в ходе эволюции начали складываться пути координации различных систем нашего организма (и организма наших эволюционных предшественников)[63].

Ученые пытаются столь же детально изучить другие подобные истории, каждая из которых напоминает о тонко настроенном взаимодействии и тщательной координации, необходимых, когда речь идет об управлении организмом, состоящим из триллиона клеток. Переход же на уровень суперорганизма подразумевает, что система в целом включает триллионы других клеток, которые действуют в какой-то степени независимо и интересы которых не всегда полностью совпадают с интересами «родных» клеток нашего тела.

Из истории о бутирате можно сделать еще два вывода. Обычно ни одна малая молекула не ограничивается выполнением лишь одной функции. Чаще всего молекула вовлечена в деятельность разных систем, причем ее функции подчас кажутся в чем-то противоречивыми. Одна молекула может участвовать в тонкой настройке многих систем организма. Более того, сети передачи сигнала, чью деятельность она модулирует, переплетаются со многими другими; ко всем этим взаимодействиям следует подходить весьма тщательно, если мы хотим получить сколько-нибудь ясное представление об их возможных конечных результатах. Все эффекты, которые оказывает моя гипотетическая гиперактивная молекула бутирата, зависят от конкретных клеточных обстоятельств. Нужно иметь все это в виду, пытаясь разобраться, означают ли новые открытия касательно микробиома именно то, о чем заявляют их авторы и пропагандисты.

А теперь следует вернуться на более высокие уровни микробиома – к экосистемам и комплексным взаимодействиям. Но пока мы еще здесь, внизу, играем в рьяных редукционистов и пытаемся изучать объекты по одному, давайте обратимся к очередной истории с единственным главным героем. Речь у нас пойдет не о молекуле, а о некоей бактерии.

«Хорошая» бактерия, «плохая» бактерия

Мешанина из бесчисленных результатов ДНК-анализа, получаемых современными специалистами, определенно говорит лишь одно: существует несметное множество разновидностей бактерий, которые могут оказаться среди микробного населения человеческого организма. Это разнообразие наряду с еще более огромным разнообразием генов, которые все эти микробы имеют в своем коллективном распоряжении (как мы уже знаем, таких генов больше 10 миллионов), представляет собой во всех смыслах гигантскую проблему, в которой еще только предстоит разобраться.

Впрочем, если сосредоточиться всего на одной бактерии, тоже можно немало узнать. Как и в случае с E. coli, лабораторное исследование которой плодотворно уже много лет, выяснение как можно большего количества информации об одной-единственной бактерии способно показать, как бактерии взаимодействуют с нашим организмом.

Возьмем, к примеру, интригующую историю Helicobacter pylori. Это существо особенно удобно для одновидовых штудий, поскольку устойчиво к воздействию кислой среды и поэтому может жить в желудке (где численность бактериального населения значительно ниже, чем в кишечнике). Возможно, по этой причине данная бактерия – нелучшая иллюстрация того, как мы взаимодействуем с прочими компонентами нашего микробиома, однако она позволяет демонстрировать немаловажные особенности наших связей с бактериальными видами.

История эта может похвастаться удивительными поворотами: в частности, за 30 лет она дважды коренным образом переменила господствующее в научных и медицинских кругах мнение, причем во второй раз потребовалось выкорчевать воззрения, прочно укоренившиеся на предыдущем этапе.

1 ... 28 29 30 ... 81
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Я – суперорганизм! Человек и его микробиом - Джон Тёрни», после закрытия браузера.

Комментарии и отзывы (0) к книге "Я – суперорганизм! Человек и его микробиом - Джон Тёрни"