Онлайн-Книжки » Книги » 👨‍👩‍👧‍👦 Домашняя » Нильс Бор. Квантовая модель атома - Хайме Наварро

Читать книгу "Нильс Бор. Квантовая модель атома - Хайме Наварро"

200
0

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 26 27 28 ... 32
Перейти на страницу:

С самого начала явление не казалось совсем уж невообразимым. Несколько лет назад было принято знаменитое уравнение Эйнштейна, Е = mc2, связавшее материю и энергию. Но на сей раз это отношение было впервые сфотографировано в лаборатории. И удалось это сделать Блэкетту и Оккиалини.

Таким образом, позитрон добавлял неожиданную характеристику понятию элементарной частицы: они могут создаваться и аннигилировать, превращаясь в энергию. То, что не допускалось для атома Дальтона в начале XIX века, теперь совершали даже его компоненты.


ЯДЕРНАЯ ФИЗИКА

Летом 1932 года семья Боров переехала в особняк, который фонд •«Карлсберг» предоставлял тому, кого исполнительный комитет сочтет самым влиятельным датчанином в культуре или науке на национальном и международном уровне. Проживать в этой резиденции было честью, но это также подразумевало многочисленные официальные обязанности, поскольку в особняке проводились встречи со знатными лицами и выдающимися деятелями политики, экономики и культуры. С этими задачами Боры — особенно Маргрет — всегда справлялись как радушные хозяева.

Первыми почетными гостями, которых Боры приняли в своей новой резиденции в сентябре 1932 года, стали Резерфорд с супругой, которым недавно были пожалованы титулы лорда и леди Резерфорд Нельсон. Это, безусловно, стало особенно волнительным моментом для обоих друзей. С тех пор как состоялась их первая встреча, миновало 20 лет. Тогда информация о структуре атома была минимальной, было известно лишь, что существуют электроны. Резерфорд и Бор изменили это представление за несколько лет работы в Манчестере, и сейчас они видели, как их детища, Институт теоретической физики в Копенгагене и Кавендишская лаборатория в Кембридже, стали центрами мировой физики, ядерной физики.

Действительно, 1932 год считается чудесным годом для Кавендишской лаборатории: там не только был открыт нейтрон и «рожден» позитрон, но также успешно создан и запущен первый ускоритель частиц, с помощью которого физики Джон Дуглас Кокрофт (1897-1967) и Эрнест Уолтон (1903-1995) добились первого искусственного радиоактивного распада в истории.

Доказательство существования нейтрона и позитрона, наряду с предположением о существовании нейтрино, радикально изменило понимание атомного ядра, и уже можно было дать первое связное объяснение первому ядерному явлению — радиоактивности. Ведь если ядро состоит лишь из протонов и нейтронов и точно известно, что β-излучение состоит только из электронов, которых нет в оболочке атома, откуда берутся эти электроны? В 1930 году Паули ввел почти призрачную частицу (не имеющую заряда, массы и практически необнаружимую) — нейтрино,— которая испускалась при β-излучении.

Первую теорию, все еще справедливую в ее основных принципах, в декабре 1933 года сформулировал Энрико Ферми (1901-1954). Эта теория была настолько прогрессивной, что при первых попытках опубликовать статью издатели научных журналов отказывались печатать ее, посчитав исключительно умозрительной. И это после 20 лет постоянных прорывов в физике!


Ученые зависят не от идей одного человека, а от комбинированной мудрости тысяч людей, которые все вместе думают над одной и той же проблемой. Каждый из них вносит свой маленький вклад в структуру знания, которая постепенно выстраивается.

Эрнест Резерфорд


Теория Ферми гласит, что в ядре нейтрон может трансформироваться в протон + электрон + нейтрино, при этом последние два испускаются вне ядра. То же самое может происходить с трансформацией протона в нейтрон + позитрон + нейтрино, благодаря чему образуется искусственная радиоактивность, которую некоторое время назад открыли супруги Ирен Кюри (1897-1956), дочь Марии Кюри, и Фредерик Жолио-Кюри.

При этих трансформациях масса, заряд и другие величины, например спин, сохранялись. Как видно, Ферми укрепил в этой теории идею о том, что элементарные частицы не так уж и элементарны, они способны трансформироваться одна в другую.

Идею подхватил Гейзенберг, а через некоторое время японец Хидэки Юкава (1907-1981) объяснил, как протонам и нейтронам удается оставаться такими сплоченными в столь маленьком пространстве, как атомное ядро. С учетом действия единственных известных на тот момент сил — гравитационной и электромагнитной — эта сплоченность была невозможной из-за электростатического отталкивания, которое должны были испытывать протоны (все с положительным зарядом).

РИС . 5

Ядерные протоны и нейтроны сплочены благодаря их постоянной смене сущностей, результату взаимообмена мезона.


Гейзенберг ввел термин «нуклон» в отношении как протонов, так и нейтронов. Его идея состояла в том, что протоны постоянно превращаются в нейтроны, а те — в протоны, и именно эта постоянная смена сущности поддерживает нуклоны сплоченными (см. рисунок 5). Юкава в 1934 году допустил, что эта трансформация протонов в нейтроны, и наоборот, осуществляется с созданием, взаимообменом и аннигиляцией промежуточной частицы — мезона.

В 1937 году в космических лучах была обнаружена новая частица, характеристики которой походили на предсказанные Юкавой, включая непродолжительность их жизни. Так что умозрительная частица Юкавы была сразу же отождествлена с мезоном, замеченным в космических лучах. После Второй мировой войны это отождествление было признано неверным (мезон космических лучей и мезон Юкавы оказались двумя различными частицами), но это способствовало созданию первого устойчивого образа атомного ядра и пониманию, что его внутренние силы отличаются от известных до тех пор. Это стало первым шагом на пути к тому, что мы сегодня знаем как «слабое взаимодействие» (сила Ферми в радиоактивности) и «сильное взаимодействие» (сила Юкавы).


ЭКСПЕРИМЕНТАЛЬНАЯ НАУКА В КОПЕНГАГЕНЕ

С момента открытия в годы Первой мировой войны Института теоретической физики основным оборудованием в нем были бумага и карандаш, доска и мел, а также постоянно пополнявшийся книжный и журнальный фонд. В 1930-х Бор реорганизовал свое учреждение и превратил его также в экспериментальный центр ядерной физики первого порядка.

Успех первого ускорителя частиц Кокрофта и Уолтона в Кембридже подстегнул сооружение других ускорителей и развитие новых технологий во многих центрах физики во всем мире. Бор решил, что Копенгаген не может отстать в этой набирающей обороты гонке. Благодаря авторитету и административным способностям Бор получил финансирование, достаточное для строительства не одного, а трех ускорителей: двух линейных и одного циклического, или циклотрона.

Смысл ускорителей был не только в изучении ядерной физики на более глубоком уровне, но и в производстве радиоактивных изотопов для медицинских целей. И именно так сложился симбиоз биологии с физикой в Институте Бора.

Дьёрдь де Хевеши, с которым Бор уже сотрудничал в Манчестере, отвечал за развитие биологической части ядерного проекта. Идея заключалась в создании радиоактивных изотопов низкой интенсивности для использования в качестве маркеров в тканях и органах.

1 ... 26 27 28 ... 32
Перейти на страницу:

Внимание!

Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Нильс Бор. Квантовая модель атома - Хайме Наварро», после закрытия браузера.

Комментарии и отзывы (0) к книге "Нильс Бор. Квантовая модель атома - Хайме Наварро"