Читать книгу "Программируя Вселенную. Квантовый компьютер и будущее науки - Сет Ллойд"
Шрифт:
Интервал:
Закладка:
Неведение распространяется, энтропия отдельных элементов системы растет. При таком взгляде на второе начало термодинамики увеличение энтропии похоже на эпидемию. Биты неведения – словно вирусы, которые копируются и распространяются в процессе взаимодействия. Заражение продолжается до тех пор, пока все элементы системы не будут инфицированы. В этот момент энтропии частей системы, взятые по отдельности, будут близки к своему максимальному значению.
Когда Йозеф Лошмидт предположил, что можно уменьшить энтропию газа, одновременно обратив скорости всех его атомов, Больцман над ним посмеялся. Но, как мы сейчас увидим, идею Лошмидта можно реализовать в реальных физических системах. В таких системах, как может показаться, энтропия уменьшается, нарушая второе начало термодинамики (хотя на самом деле это не так).
Что произойдет, если изменить направления движения компонентов системы на противоположные? За счет взаимодействия между частями системы все ходы сами собой окажутся «взяты назад», а энтропии уменьшатся. Конечно, первоначальное предложение Лошмидта – обратить скорости атомов газа – невыполнимо на практике. Но для некоторых систем лозунг Больцмана «обратить движение вспять» можно реализовать.
Простой пример такой обратимой динамики – операция «условное не», описанная выше. В этой очень простой логической операции инвертируется один бит в том и только том случае, если значение управляющего бита 1. Как мы уже говорили, если начальное значение второго бита 0, а значение управляющего бита может быть или 0, или 1, то после операции значение обоих битов будет или 0, или 1. Операция «условное не» заставляет второй бит, сначала имевший нуль битов энтропии, подстроиться под состояние первого бита так, что энтропия второго бита в новом состоянии составит один бит. Неведение первого бита заражает второй, и его энтропия увеличивается.
Чтобы взять назад операцию «условное не», нужно просто выполнить ее во второй раз. После первой операции значение обоих битов будет или 0, или 1. Во время второй операции, если значение управляющего бита равно 0, то значение второго бита останется 0, а если значение управляющего бита 1, то второй бит изменит свое состояние с 1 на 0. В любом случае вторая операция отменит первую и вернет второму биту значение 0. В результате энтропия этого бита уменьшится от одного до нуля битов.
Другое применение предложения Лошмидта – эффект спинового эха. Чтобы понять, что это такое, рассмотрим следующую макроскопическую аналогию. Бегуны выстраиваются в ряд у линии старта. Звучит стартовый выстрел, и они срываются с места. Но бегут они с разной скоростью, причем некоторые по внутренним дорожкам, а некоторые по внешним, так что через несколько кругов бегуны распределятся по всему пространству трека. Через десять минут звучит второй выстрел. Услышав его звук, бегуны разворачиваются и начинают бежать в противоположном направлении. Если все они бегут с той же скоростью, что и раньше, то постепенно начинают сходиться в одном месте трека, а расстояния между ними уменьшаются. Через десять минут все вместе они окажутся на линии старта.
В эффекте спинового эха бегуны – это ядерные спины[16]. Протоны и нейтроны, из которых состоят ядра атомов, вращаются, как небольшие волчки. Спин традиционно описывают словами «вверх» или «вниз», в зависимости от направления вращения: если вы представите себе лежащие на столе наручные часы, то вращение «вверх» будет против часовой стрелки, а вращение «вниз» – по часовой. Есть другой удобный способ запомнить, что такое спин «вверх» и спин «вниз»: согните пальцы правой руки в том направлении, в котором вращается протон или нейтрон. Тогда большой палец будет направлен вдоль оси вращения, а его направление будет определять «направление» спина – «вверх» или «вниз»[17].
Возьмем несколько протонов, которые первоначально вращаются в одном и том же направлении. Раз их вращения известны, энтропия каждого равна нулю. Теперь подадим импульс микроволнового излучения и заставим все протонные спины прецессировать. (Прецессия – это «блуждание» оси, которое демонстрирует косо стоящий волчок под воздействием силы тяжести[18]. Ядерные спины похожи на небольшие волчки, ось которых отклоняется от начального положения под влиянием силы магнетизма.) Каждый спин прецессирует со своей скоростью, немного отличной от скорости других, и скоро спины наших протонов указывают во всех направлениях, как бегуны, распределившиеся по всему треку. Скорость прецессии каждого спина определяется его локальным магнитным полем; эта скорость является «невидимой» информацией, недоступной макроскопическому наблюдателю. Так как направления, в которых указывают спины, теперь неизвестны, спины сами по себе теперь обладают высокой, почти максимальной энтропией. Она равна числу битов, необходимых для указания текущих направлений спинов (то есть «вверх» или «вниз») с точностью, позволенной квантовой механикой.
Увеличение энтропии отдельных спинов – пример увеличения энтропии в процессе распространения информации. Прецессирующие спины «заразились» информацией в локальном магнитном поле. Если бы мы обладали этой информацией, то могли бы узнать, в каких направлениях указывают спины. Но у нас нет такой информации, и, так как спины начинают коррелировать с магнитным полем, энтропия каждого из них увеличивается.
Теперь устроим спиновое эхо. Включаем второй микроволновой импульс, который инвертирует углы прецессии, к примеру угол +60° превращается в –60°. Теперь каждый спин продолжает прецессировать, но при этом «отыгрывает назад» угол, набранный ранее. Через такое же время, которое потребовалось, чтобы спины стали неизвестными, они снова будут указывать в одном и том же направлении. Их энтропия вновь уменьшилась до нуля!
Эффект спинового эха впервые был продемонстрирован в эксперименте пятьдесят лет назад[19]. Есть и более сложные аналоги концепции Лошмидта, но все они сводятся к одной и той же процедуре. Если вы достаточно квалифицированный экспериментатор и Больцман говорит: «Обратите их», вы сможете это сделать!
Почему же эффект спинового эха не нарушает второго начала термодинамики, которое гласит, что увеличение энтропии невозможно отменить? В случае эффекта спинового эха только кажется, что на первом этапе эксперимента энтропия увеличивается. Хотя энтропия спинов, взятых по отдельности, увеличивается, а затем уменьшается в период действия «эха», энтропия спинов, взятых вместе с магнитным полем, остается неизменной.
Внимание!
Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Программируя Вселенную. Квантовый компьютер и будущее науки - Сет Ллойд», после закрытия браузера.