Читать книгу "Вселенная Стивена Хокинга - Стивен Хокинг"
Шрифт:
Интервал:
Закладка:
Но в 1967 году канадский ученый Вернер Израэль (он родился в Берлине, вырос в Южной Африке и защитил диссертацию в Ирландии) совершил революцию в исследовании черных дыр. Ученый показал, что согласно общей теории относительности невращающиеся черные дыры должны быть устроены очень просто: иметь форму идеальной сферы и размер, который зависит только от массы. Так что две черных дыры с одинаковой массой совершенно одинаковы. Такие черные дыры описываются частным решением уравнений Эйнштейна, известным с 1917 года и полученным Карлом Шварцшильдом вскоре после создания общей теории относительности. Сначала многие физики, включая и самого Израэля, считали, что, поскольку черные дыры должны быть идеально сферическими, они могут образовываться только в ходе коллапса абсолютно сферически симметричного объекта. А следовательно, коллапс любой реальной звезды – которая никак не может быть абсолютно сферически симметричной – может породить только голую сингулярность.
Но было предложено и другое толкование результата Израэля, которого, в частности, придерживались Роджер Пенроуз и Джон Уилер. Они утверждали, что из-за сопровождающих коллапс звезды перемещений вещества на высокой скорости и сопутствующего излучения гравитационных волн звезда будет становиться все более сферически симметричной и к моменту, когда она достигнет стационарного состояния, она примет форму идеальной сферы. Согласно этой точке зрения, в результате гравитационного коллапса любая невращающаяся звезда со сколь угодно сложной формой и внутренней структурой должна превратиться в идеально сферически симметричную черную дыру, чей размер зависит только от массы. Последующие расчеты подтвердили этот вывод, и вскоре он стал общепринятым.
Результат Израэля касался только черных дыр, возникших из невращающихся тел. В 1963 году новозеландский ученый Рой Керр нашел множество решений уравнений общей теории относительности, описывающих вращающиеся черные дыры. Керровские черные дыры вращаются с постоянной скоростью, и их размер и форма зависят только от массы и скорости вращения. В случае нулевого вращения черная дыра представляет собой идеальную сферу и соответствующее решение совпадает с решением Шварцшильда. В случае ненулевого вращения черная дыра увеличивается в диаметре по экватору (совсем как Земля и Солнце по причине их вращения), и это тем заметнее, чем выше скорость. Чтобы распространить результат Израэля на вращающиеся тела, выдвинули предположение о том, что любое такое тело, коллапсирующее в черную дыру, должно в конце концов достичь стационарного состояния, описываемого решением Керра.
В 1970 году мой коллега Брэндон Картер, с которым мы вместе учились в аспирантуре в Кембридже, сделал первый шаг на пути к доказательству этой гипотезы. Он показал, что если вращающаяся черная дыра осесимметрична, подобно детскому волчку, то ее размер и форма зависят только от массы и скорости вращения. Потом в 1971 году я предложил решение, согласно которому любая стационарная вращающаяся черная дыра должна быть осесимметрична. Наконец, в 1973 году Дэвид Робинсон из Королевского колледжа Лондона воспользовался моими результатами и результатами Картера и доказал, что гипотеза верна: такая черная дыра действительно должна описываться решением Керра. Следовательно, после гравитационного коллапса черная дыра должна прийти в состояние, в котором она может вращаться, но не пульсировать. Более того, на размер и форму черной дыры влияют только масса и скорость вращения, но не природа тела, из которого она образовалась. Этот вывод традиционно формулируется афористично: у черной дыры нет волос. Теорема об «отсутствии волос» имеет чрезвычайно важное практическое значение, потому что сильно ограничивает набор возможных типов черных дыр. Благодаря этому мы можем строить детальные модели объектов, содержащих черные дыры, и сравнивать предсказания этих моделей с наблюдениями. Из теоремы также следует, что при образовании черной дыры оказывается утраченным огромный объем информации о коллапсирующем теле, ведь единственное, что мы можем узнать о нем после коллапса, – это его масса и скорость вращения. Важность этого заключения станет ясна в следующей главе.
Черные дыры – один из довольно немногочисленных случаев в истории науки, когда теория развивалась в значительной степени как чисто математическая модель, а наблюдательные ее подтверждения появились уже потом. И действительно, это обстоятельство противники концепции приводили как основной аргумент: как можно верить в наличие объектов, единственным свидетельством существования которых являются расчеты, основанные на сомнительной общей теории относительности? Однако в 1963 году астроном Мартен Шмидт из Паломарской обсерватории в Калифорнии измерил красное смещение точечного звездообразного объекта в направлении радиоисточника 3C273 (то есть источника номер 273 в Третьем Кембриджском каталоге радиоисточников). Мартен Шмидт заключил, что полученный показатель слишком велик, чтобы быть результатом действия гравитационного поля: если бы речь шла о гравитационном красном смещении, то объект был бы столь массивным и находился столь близко от нас, что неизбежно оказывал бы возмущающее действие на орбиты планет Солнечной системы. Значит, красное смещение было связано с расширением Вселенной, и следовательно, объект находится на очень большом расстоянии от нас. Чтобы быть видимым на таком огромном расстоянии, объект должен быть очень ярким, то есть, другими словами, излучать очень много энергии в единицу времени. Единственный правдоподобный механизм, способный привести к выделению энергии в таких количествах, – это гравитационный коллапс, но коллапс не звезды, а центральной области галактики целиком. Впоследствии открыли множество такого рода «квазизвездных объектов», или квазаров, и все они оказались с большими красными смещениями. Но все они находятся слишком далеко, и поэтому их трудно наблюдать, а следовательно, они не могут служить надежным доказательством существования черных дыр.
Следующим свидетельством в пользу существования черных дыр было обнаружение объектов на небе, которые излучали регулярные радиоимпульсы. Их в 1967 году удалось зарегистрировать аспирантке Кембриджского университета Джоселин Белл Бернелл. Правда, поначалу Белл и ее научный руководитель Энтони Хьюиш решили, что вступили в контакт с внеземной цивилизацией! Мне и вправду запомнилось, как, объявляя о своем открытии на семинаре, они назвали первые четыре обнаруженных ими источника LGM 1–4, где LGM – это Little Green Men, то есть «зеленые человечки». Однако в итоге Белл с Хьюишем, да и все остальные пришли к куда менее романтичному выводу: открытые объекты, названные позднее пульсарами, признали вращающимися нейтронными звездами, которые излучают радиоимпульсы в результате сложного взаимодействия магнитного поля звезды с окружающим ее веществом. Это разочаровало авторов космических вестернов, но вселило надежду в тех немногих из нас, кто в то время верил в существование черных дыр: это было первое благонадежное доказательство в пользу существования нейтронных звезд. Радиус нейтронной звезды составляет около 20 километров, что всего в несколько раз превышает критический радиус, при котором звезда становится черной дырой. Если звезда в состоянии сколлапсировать до столь малого размера, то вполне разумно предположить, что другие звезды могут сжаться еще больше и превратиться в черные дыры.
Внимание!
Сайт сохраняет куки вашего браузера. Вы сможете в любой момент сделать закладку и продолжить прочтение книги «Вселенная Стивена Хокинга - Стивен Хокинг», после закрытия браузера.